Skip to main content
Log in

Morphology and structural properties of nanocrystalline and nanocolumnar aluminum thin films grown on glass and Ti/glass substrates

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Nanocrystalline and nanocolumnar aluminum thin films were deposited on glass and Ti/glass substrates at normal and oblique angles of incidence in vacuum (1.0 × 10−6 Torr) by using an electron-beam evaporator. The average grain size of the Al thin films produced at a normal angle of incidence increased from 25 nm to 50 nm when the substrate was changed from glass to Ti/glass. The average aspect ratio of the aluminum nanocolumns (Al nanorods) grown on the glass substrate increased from 1.65 to 3.65 as the deposition angle increased from 65° to 85° while the aspect ratio of Al nanorods grown on Ti/glass substrates increased from 1.80 to 4.00 as the deposition angle increased from 65° to 85°. The X-ray diffraction pattern showed a broad baseline in nanocrystalline and nanocolumnar thin films. In the case of Al thin films on glass, the full width at half maximum (FWHM) was observed to be 14.34 for all depositions while in the case of Al thin films on Ti/glass, the FWHM was decreased from 17.66 to 14.02 as the deposition angle increased from 0° to 85°. The X-ray photoelectron spectroscopy analysis confirmed that the peak for Al nanorods was observed at a binding energy of 74.44 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy and A. V. Zayats, Nat. Mater. 8, 867 (2009).

    Article  ADS  Google Scholar 

  2. W. Ni, T. Ambjornsson, S. P. Apell, H. Chen and J. Wang, Nano Lett. 10, 77 (2010).

    Article  ADS  Google Scholar 

  3. L. Li, X. Xu, H. Chew, X. Huang, X. Dou, S. Pan, G. Li and L. Zhang, J. Phys. Chem. C 112, 5328 (2008).

    Article  Google Scholar 

  4. M. Au, S. M. Whorter, H. Ajo, T. Adams, Y. Zhao and J. Gibbs, J. Power Sources 195, 3333 (2010).

    Article  Google Scholar 

  5. Y. J. Liu, H. Y. Chu and Y. P. Zhao, J. Phys. Chem. C 114, 8176 (2010).

    Article  Google Scholar 

  6. C. Jiang and V. V. Tsukruk, Adv. Mater. 18, 829 (2006).

    Article  Google Scholar 

  7. H. Qin, J. Jin, X. Peng and I. Ichinose, J. Mater. Chem. 20, 858 (2010).

    Article  Google Scholar 

  8. V. V. Kislyuk and O. P. Dimitriev, J. Nanosci. Nanotechnol. 8, 131 (2008).

    Article  Google Scholar 

  9. S. J. Jeong, H. S. Moon, J. Shin, B. H. Kim, D. O. Shin, J. Y. Kim, Y. H. Lee, J. U. Kim and O. Kim, Nano Lett. 10, 3500 (2010).

    Article  ADS  Google Scholar 

  10. M. G. Kang, H. J. Park, S. H. Ahn and L. J. Guo, Sol. Energy Mater. Sol. Cells 94, 1179 (2010).

    Article  Google Scholar 

  11. K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams and C. Buzea, Rev. Sci. Instrum. 75, 1089 (2004).

    Article  ADS  Google Scholar 

  12. M. M. Hawkeye and M. J. Brett, J. Vac. Sci. Technol., A 25, 1317 (2007).

    Article  Google Scholar 

  13. Y. Pihosh, I. Turkevych, J. Ye, M. Goto, A. Kasahara, M. Kondo and M. Tosa, J. Electrochem. Soc. 156, K160 (2009).

    Article  Google Scholar 

  14. N. Haberkorn, J. S. Gutmann and P. Theato, ACS Nano 3, 1415 (2009).

    Article  Google Scholar 

  15. S. K. Cheah, E. Perre, M. Rooth, M. Fondell, A. Harsta, L. Nyholm, M. Boman, T. Gustafsson, J. Lu, P. Simon and K. Edstrom, Nano Lett. 9, 3230 (2009).

    Article  ADS  Google Scholar 

  16. M. B. Pomfret, D. J. Brown, A. Epshteyn, A. P. Purdy and J. C. Owrutsky, Chem. Mater. 20, 5945 (2008).

    Article  Google Scholar 

  17. M. A. Khan, T. P. Hogan and B. Shanker, J. Nano Systems Technol. 1, 1 (2009).

    Google Scholar 

  18. J. L. Plawsky, J. K. Kim and E. F. Schubert, Mater. Today 12, 36 (2009).

    Article  Google Scholar 

  19. L. W. Bezuidenhout and M. J. Brett, J. Chromatogr. A 1183, 179 (2008).

    Article  Google Scholar 

  20. S. Wang, G. Xia, H. He, K. Yi, J. Shao and Z. Fan, J. Alloys Compd. 431, 287 (2007).

    Article  Google Scholar 

  21. H. Y. Yang, M. F. Less, C. H. Huang, Y. S. Lo, Y. J. Chen and M. S. Wong, Thin Solid Films 518, 1590 (2009).

    Article  ADS  Google Scholar 

  22. J. J. Steele, M. T. Taschuk and M. J. Brett, IEEE Sens. J. 8, 1422 (2008).

    Article  Google Scholar 

  23. G. Guisbiers, S. Strehle and M. Wautelet, Microelectron. Eng. 82, 665 (2005).

    Article  Google Scholar 

  24. B. B. He, Two Dimensional X-ray Diffraction (John Wiley & Sons Lic., New Jersey, 2009), Chap. 9.

    Book  Google Scholar 

  25. K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams and C. Buzea, Rev. Sci. Instrum. 75, 1089 (2004).

    Article  ADS  Google Scholar 

  26. S. Lichter and J. Chen, Phys. Rev. Lett. 56, 1396 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunsik Im.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.K., Kim, BG., Lee, HS. et al. Morphology and structural properties of nanocrystalline and nanocolumnar aluminum thin films grown on glass and Ti/glass substrates. Journal of the Korean Physical Society 60, 1491–1497 (2012). https://doi.org/10.3938/jkps.60.1491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.1491

Keywords

Navigation