Skip to main content
Log in

Thickness and temperature dependences of the degradation and the breakdown for MgO-based magnetic tunnel junctions

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The reliability of a magnetic tunnel junction (MTJ) with an MgO tunnel barrier was evaluated. In particular, various voltage tests were used to investigate the effects of the barrier thickness and the temperature on the resistance drift. We compared the resistance change during a constant voltage stress (CVS) test and confirmed a trap/detrap phenomenon during the interval stress for different barrier thicknesses and temperatures. The resistance drift representing degradation and the time to breakdown (T BD ) representing the breakdown characteristic were better for a thicker barrier and lower temperature, but were worse for a thinner barrier and a higher temperature. The results suggest that breakdown and degradation due to trap generation strongly depend on both the barrier thickness and the temperature. Furthermore, as the TBD varies at steady rates with changing barrier thickness, temperature, and electric field, we assume that a MTJ with an adnormal thin layer of MgO can be screened effectively based on the predicted T BD . As a result, the barrier thickness and the temperature are very important in determining the reliability of a MTJ, and this study is expected to be helpful in understanding the degradation and the breakdown of a MTJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hosomi et al., in Proceedings of the IEDM Technical Digest (Washington, USA, Dec. 5–7, 2005), p. 459.

    Google Scholar 

  2. R. Beach et al., in Proceedings of the IEDM Technical Digest (San Francisco, USA, Dec. 15–17, 2008), p. 1.

    Google Scholar 

  3. E. Chen et al., IEEE Trans. Magn. 46, 1873 (2010).

    Article  ADS  Google Scholar 

  4. T. Kawahara, K. Ito, R. Takemura and H. Ohno, Microelectron. Reliab. 52, 613 (2012).

    Article  Google Scholar 

  5. J. Akerman et al., IEEE Trans. Device Mater. Reliab. 4, 428 (2004).

    Article  Google Scholar 

  6. C. Yoshida, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Stoh, M. Aoki, S. Umehara, M. Satoh and K. Kobayashi, in Proceedings of the 44th IEEE International Reliability Physics Symposium (San Jose, USA, March 26–30, 2006), p. 697.

    Google Scholar 

  7. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant and S. H. Yang, Nature Mater. 3, 862 (2004).

    Article  ADS  Google Scholar 

  8. A. A. Khan, J. Schmalhorst, A. Thomas, O. Schebaum and G. Reiss, J. Appl. Phys. 103, 123705 (2008).

    Article  ADS  Google Scholar 

  9. D. V. Dimitrov, Zheng Gao, Xiaobin Wang, Wonjoon Jung, Xiaohua Lou and Olle G. Heinonen, Appl. Phys. Lett. 94, 123110 (2009).

    Article  ADS  Google Scholar 

  10. S. Amara-Dababi, H. Bea, R. C. Sousa, C. Baraduc and B. Dieny, Appl. Phys. Lett. 102, 052404 (2013).

    Article  ADS  Google Scholar 

  11. C. Yoshida, M. Kurasawa, Y. M. Lee, K. Tsunoda, M. Aoki and Y. Sugiyama, in Proceedings of the 47th IEEE International Reliability Physics Symposium (Montreal, Canada, April 26–30, 2009), p. 139.

    Google Scholar 

  12. K. Hosotani et al., in Proceedings of the 45th IEEE International Reliability Physics Symposium (Phoenix, USA, April 15–19, 2007), p. 650.

    Google Scholar 

  13. E. Cartier and A. Kerber, in Proceedings of the 47th IEEE International Reliability Physics Symposium (Montreal, Canada, April 26–30, 2009), p. 486.

    Google Scholar 

  14. C. S. Jenq, T. R. Ranganath, C. H. Huang, H. S. Jones and T. L. Chang, in Proceedings of the IEDM Technical Digest (Washington, USA, Dec. 7–9, 1981), p. 388.

    Google Scholar 

  15. M. S. Liang and C. Hu, in Proceedings of the IEDM Technical Digest (Washington, USA, Dec. 7–9, 1981), p. 396.

    Google Scholar 

  16. J. Zhang and R. M. White, J. Appl. Phys. 83, 6512 (1998).

    Article  ADS  Google Scholar 

  17. J. Wingbermuhle, S. Stein and H. Kohlstedt, J. Appl. Phys. 92, 7261 (2002).

    Article  ADS  Google Scholar 

  18. J. W. McPherson and H. C. Mogul, J. Appl. Phys. 84, 1513 (1998).

    Article  ADS  Google Scholar 

  19. I. C. Chen, S. E. Holland and C. Hu, IEEE Trans. Electron Devices 32, 413 (1985).

    Article  ADS  Google Scholar 

  20. P. S. Ku and C. Young, in Proceedings of the 44th IEEE International Reliability Physics Symposium (San Jose, USA, March 26–30, 2006), p. 437.

    Google Scholar 

  21. R. Degraeve, B. Govoreanu, B. Kaczer, J. V. Houdt and G. Groeseneken, in Proceedings of the 43th IEEE International Reliability Physics Symposium (San Jose, USA, April 17–21, 2005), p. 360.

    Google Scholar 

  22. S. Kamohara, D. Park and C. Hu, in Proceedings of the 36th IEEE International Reliability Physics Symposium (Reno, USA, March 31–April 2, 1998), p. 57.

    Google Scholar 

  23. J. M. Lee, G. H. Kil, G. H. Lee, C. M. Choi and Y. H. Song, J. Korean Phys. Soc. 64, 1144 (2014).

    Article  ADS  Google Scholar 

  24. R. Degraeve, G. Groeseneken, R. Bellens, M. Depas and H.E. Maes, in Proceedings of the IEDM Technical Digest (Washington, USA, Dec. 10–13, 1995), p. 863.

    Google Scholar 

  25. M. Klaua, D. Ullmann, J. Barthel, W. Wulfhekel, J. Kirschner, R. Urban, T. L. Monchesky, J. F. Cochran and B. Heinrich, Appl. Phys. Rev. B 64, 134411 (2001).

    ADS  Google Scholar 

  26. E. Vincent, N. Revil, C. Papadas and G. Ghilbaudo, Microelectron. Reliab. 36, 1643 (1996).

    Article  Google Scholar 

  27. T. Andre et al., in Proceedings of the IEEE Custom Integrated Circuits Conference (CICC) (San Jose, USA, Sept. 22–25, 2013), p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Heub Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JM., Song, YH. Thickness and temperature dependences of the degradation and the breakdown for MgO-based magnetic tunnel junctions. Journal of the Korean Physical Society 66, 972–977 (2015). https://doi.org/10.3938/jkps.66.972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.972

Keywords

Navigation