Skip to main content
Log in

MR thermometry analysis program for laser- or high-intensity focused ultrasound (HIFU)-induced heating at a clinical MR scanner

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Germain, P. Chevallier, A. Laurent and H. Saint-Jalmes, MAGMA. 13, 47 (2001).

    Article  Google Scholar 

  2. V. Rieke and K. B. Pauly, J. Magn. Reson. Imaging 27, 376 (2008).

    Article  Google Scholar 

  3. B. D. de Senneville, C. Mougenot, B. Quesson, I. Dragonu, N. Grenier and C. T Moonen, Eur. Radiol. 17, 2401 (2007).

    Article  Google Scholar 

  4. T. J. Vogl, R. Straub, S. Zangos, M. G. Mack and K. J. Eichler, Hyperthermia 20, 713 (2004).

    Article  Google Scholar 

  5. A. Maataoui, J. Qian, M. G. Mack, R. Straub, E. Oppermann, M. F. Khan, V. Knappe and T. J. Vogl, Rofo. 177, 405 (2005).

    Article  Google Scholar 

  6. J. Gellermann, W. Wlodarczyk, A. Feussner, H. Fahling, J. Nadobny, B. Hildebrandt, R. Felix and P. Wust, Int J Hyperthermia 21, 497 (2005).

    Article  Google Scholar 

  7. C. Aub´e, D. Schmidt, J. Brieger, M. Schenk, T. Helmberger, C. W. Koenig, F. Schick, C. D. Claussen and P. L. Pereira, J. Vasc. Interv. Radiol. 15, 385 (2004).

    Article  Google Scholar 

  8. K. Demura, S. Morikawa, K. Murakami, K. Sato, H. Shiomi, S. Naka, Y. Kurumi, T. Inubushi and T. Tani, J. Surg. Res. 135, 179 (2006).

    Article  Google Scholar 

  9. K. Sato, S. Morikawa, T. Inubushi, Y. Kurumi, S. Naka, H. A. Haque, K. Demura and T. Tani, Magn. Reson. Med. Sci. 4, 89 (2005).

    Article  Google Scholar 

  10. E. A. Stewart et al., Fertil. Steril. 85, 22 (2006).

    Article  Google Scholar 

  11. H. Furusawa, K. Namba, S. Thomsen, F. Akiyama, A. Bendet, C. Tanaka, Y. Yasuda and H. Nakahara, J. Am. Coll. Surg. 203, 54 (2006).

    Article  Google Scholar 

  12. R. D. Peters, E. Chan, J. Trachtenberg, S. Jothy, L. Kapusta, W. Kucharczyk and R. M. Henkelman, Magn. Reson. Med. 44, 873 (2000).

    Article  Google Scholar 

  13. V. P. Zharov, K. E. Mercer, E. N. Galitovskaya and M.S. Smeltzer, Biophys. J. 90, 619 (2006).

    Article  ADS  Google Scholar 

  14. W. Cai, T. Gao, H. Hong and J. Sun, Nanotechnol. Sci. Appl. 19, 17 (2008).

    Google Scholar 

  15. C. Loo, A. Lowery, N. Halas, J. West and R. Drezek, Nano. Lett. 5, 709 (2005).

    Article  ADS  Google Scholar 

  16. L. Tong, Y. Zhao, T. B. Huff, M. N. Hans, A. Wei and J. X. Cheng, Adv. Mater. 19, 3136 (2007).

    Article  Google Scholar 

  17. Y. Chen, S. C. Gnyawali, F. Wu, H. Liu, Y. A. Tesiram, A. Abbott, R. A. Towner and W. R. Chen. J. Biomed. Opt. 13, 044033 (2008).

    Article  ADS  Google Scholar 

  18. T. J. Vogl, F. Huebner, N. N. Naguib, R. W. Bauer, M. G. Mack, N. E. Nour-Eldin and D. Meister. Lasers Surg. Med. 44, 257 (2012).

    Article  Google Scholar 

  19. B. Bazrafshan, F. Hübner, P. Farshid, J. Paul, R. Hammerstingl, V. Vogel, W. Mäntele and T. J. Vogl. Future Oncol. 9, 1039 (2013).

    Article  Google Scholar 

  20. K. Hynynen, J. Magn. Reson. Imaging. 34, 482 (2011).

    Article  Google Scholar 

  21. S. L. Hokland, M. Pedersen, R. Salomir, B. Quesson, H. Stødkilde-Jørgensen and C. T. Moonen, IEEE Trans. Med. Imaging 25, 723 (2006).

    Article  Google Scholar 

  22. E. A. Stewart et al., Am. J. Obstet. Gynecol. 189, 48 (2003).

    Article  Google Scholar 

  23. L. Zhang et al., Eur. J. Radiol. 73, 396 (2010).

    Article  Google Scholar 

  24. D. Gianfelice, A. Khiat, Y. Boulanger, M. Amara and A. Belblidia, J. Vasc. Interv. Radiol. 14, 1275 (2003).

    Article  Google Scholar 

  25. H. Furusawa, K. Namba, H. Nakahara, C. Tanaka, Y. Yasuda, E. Hirabara, M. Imahariyama and K. Komaki, Breast Cancer 14, 55 (2007).

    Article  Google Scholar 

  26. T. A. Leslie et al., Br. J. Radiol. 81, 564 (2008).

    Article  Google Scholar 

  27. B. Quesson, M. Merle, M. O. Kohler, C. Mougenot, S. Roujol, B. D. de Senneville and C. T. Moonen, Med. Phys. 37, 2533 (2010).

    Article  Google Scholar 

  28. J. Gellermann, W. Wlodarczyk, A. Feussner, H. Fahling, J. Nadobny, B. Hildebrandt, R. Felix and P. Wust. Int. J. Hyperthermia 21, 497 (2005)

    Article  Google Scholar 

  29. N. McDannold, G. T. Clement, P. Black, F. Jolesz and K. Hynynen, Neurosurgery, 66, 323 (2010).

    Article  Google Scholar 

  30. J. C Hindman. J. Chem. Phys. 44, 4582 (1966).

    Article  ADS  Google Scholar 

  31. Y. Ishihara, A. Calderon, H. Watanabe, K. Okamoto, Y. Suzuki, K. Kuroda and Y. Suzuki, Magn. Reson. Med. 34, 814 (1995).

    Article  Google Scholar 

  32. W. Wlodarczyk, R. Boroschewski, M. Hentschel, P. Wust, G. Monich and R. Felix R, J. Magn. Reson. Imaging 8, 165 (1998).

    Article  Google Scholar 

  33. J. Yuan, C. S. Mei, L. P. Panych, N. J. McDannold and B. Madore, Quant. Imaging. Med. Surg. 2, 21 (2012).

    Google Scholar 

  34. B. Quesson, J. A. de Zwart and C. T. Moonen, J. Magn. Reson. Imaging 12, 525 (2000).

    Article  Google Scholar 

  35. R. D. Peters. R. S. Hinks and R. M. Henkelman, Magn. Reson. Med. 40, 454 (1998).

    Article  Google Scholar 

  36. M. A. Bernstein Handbook of MRI Pulse Sequences (Elsevier Academic press, Burlington, 2004), Chap. 13.5, p. 558.

    Google Scholar 

  37. A. H. Chung, K. Hynynen, V. Colucci, K. Oshio, H. E. Cline and F. A. Jolesz, Magn. Reson. Med. 36, 745 (1996)

    Article  Google Scholar 

  38. M. A. Bernstein, M. Grgic, T. J. Brosnan and N. J Pelc, Magn. Reson. Med. 32, 330 (1994).

    Article  Google Scholar 

  39. Y. Hong, E. Lee, J. Choi, S. J. Oh, S. Hamm, Y. M. Huh, D. S. Yoon, J. S. Suh and J. Yang, Journal of Nanomaterials, Article ID 825060 (2012)

    Google Scholar 

  40. E. J. Kim, D. Kim, S. Lee, D. Heo, Y. H. Lee and J. S. Suh, J. Kor. Soc. Magn. Reson. Med. 18, 52 (2014).

    Article  Google Scholar 

  41. E. A. Barberi, J. S. Gati, B. K. Rutt and R. S. Menon, Magn. Reson. Med. 43, 284 (2000).

    Article  Google Scholar 

  42. B. D. de Senneville, C. Mougenot and C. T. Moonen, Magn. Reson. Med. 57, 319 (2007).

    Article  Google Scholar 

  43. A. B. Holbrook, J. M. Santos, E. Kaye, V. Rieke and K. B. Pauly, Magn. Reson. Med. 63, 365 (2010).

    Article  Google Scholar 

  44. B. Quesson B, C. Laurent, G. Maclair, B. D. de Senneville, C. Mougenot, M. Ries, T. Carteret, A. Rullier and C. T. Moonen, NMR. Biomed. 24, 145 (2011).

    Article  Google Scholar 

  45. N. Todd, M. Diakite, A. Payne and D. L. Parker, Magn. Reson. Med. 69, 62 (2013).

    Article  Google Scholar 

  46. Y. Han and C. Mun, J. Magn. Reson. Imaging 34, 1231 (2011).

    Article  Google Scholar 

  47. C. Weidensteiner, B. Quesson, B. Caire-Gana, N. Kerioui, A. Rullier, H. Trillaud and C. T. Moonen, Magn. Reson. Med. 50, 322 (2003).

    Article  Google Scholar 

  48. A. B. Holbrook, J. M. Santos, E. Kaye, V. Rieke and K. B. Pauly, Magn. Reson. Med. 63, 365 (2010).

    Article  Google Scholar 

  49. United State Patent, US 8368401 (2013). http://patents.com/us-8368401.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Suck Suh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.J., Jeong, K., Oh, S.J. et al. MR thermometry analysis program for laser- or high-intensity focused ultrasound (HIFU)-induced heating at a clinical MR scanner. Journal of the Korean Physical Society 65, 2126–2131 (2014). https://doi.org/10.3938/jkps.65.2126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.2126

Keywords

Navigation