Skip to main content
Log in

The effect of decreased interletter spacing on orthographic processing

  • Brief Report
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

There is growing interest in how perceptual factors such as the spacing between letters within words modulate performance in visual word recognition and reading aloud. Extra-large letter spacing can strongly improve the reading performance of dyslexic children, and a small increase with respect to the standard spacing seems beneficial even for skilled word recognition in adult readers. In the present study we examined the effect of decreased letter spacing on perceptual identification and lexical decision tasks. Identification in the decreased spacing condition was slower than identification of normally spaced strings, thereby confirming that the reciprocal interference among letters located in close proximity (crowding) poses critical constraints on visual word processing. Importantly, the effect of spacing was not modulated by string length, suggesting that the locus of the spacing effect is at the level of letter detectors. Moreover, the processing of crowded letters was facilitated by top-down support from orthographic lexical representation as indicated by the fact that decreased spacing affected pseudowords significantly more than words. Conversely, in the lexical decision task only word responses were affected by the spacing manipulation. Overall, our findings support the hypothesis that increased crowding is particularly harmful for phonological decoding, thereby adversely affecting reading development in dyslexic children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We used limited stimulus exposure time and post-stimulus masking because the effect of the spacing manipulation was unreliable in a pilot LDT experiment in which the stimulus was presented until response.

References

  • Baayen, R. H. (2008). Analyzing linguistic data. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412.

    Article  Google Scholar 

  • Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278.

    Article  Google Scholar 

  • Bates, D., Maechler, M, Bolker B., & Walker, S. (2013). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-4. http://CRAN.R-project.org/package=lme4

  • Besner, D., & Roberts, M. A. (2003). Reading nonwords aloud: Results requiring change in the dual route cascaded model. Psychonomic Bulletin & Review, 10, 398–404.

    Article  Google Scholar 

  • Bosse, M. L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: The visual attention span deficit hypothesis. Cognition, 104(2), 198–230.

    Article  PubMed  Google Scholar 

  • Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226, 177–178.

    Article  PubMed  Google Scholar 

  • Burani, C., Barca, L., & Arduino, L. S. (2001). Una base di dati sui valori di età di acquisizione, frequenza, familiarità, immaginabilità, concretezza e altre variabili lessicali e sub-lessicali per 626 nomi dell’italiano. Giornale Italiano di Psicologia, 4, 839–854.

    Google Scholar 

  • Callens, M., Whitney, C., Tops, W., & Brysbaert, M. (2013). No deficiency in left-to-right processing of words in dyslexia but evidence for enhanced visual crowding. The Quarterly Journal of Experimental Psychology, 66(9), 1803–1817.

    Article  PubMed  Google Scholar 

  • Chanceaux, M., & Grainger, J. (2012). Serial position effects in the identification of letters, digits, symbols, and shapes in peripheral vision. Acta Psychologica, 141, 149–158. doi:10.1016/j.actpsy.2012.08.001

    Article  PubMed  Google Scholar 

  • Chanceaux, M., Mathôt, S., & Grainger, J. (2013). Flank to the left, flank to the right: Testing the modified receptive field hypothesis of letter-specific crowding. Journal of Cognitive Psychology, 25(6), 774–780. doi:10.1080/20445911.2013.823436

    Article  Google Scholar 

  • Chicherov, V., & Herzog, M. H. (2013). Electrophysiological signatures of crowding are similar in foveal and peripheral vision. Journal of Vision, 13(9), 569.

    Article  Google Scholar 

  • Chicherov, V., Plomp, G., & Herzog, M. H. (2014). Neural correlates of visual crowding. NeuroImage, 93, 23–31.

    Article  PubMed  Google Scholar 

  • Chung, S. T. L. (2002). The effect of letter spacing on reading speed in central and peripheral vision. Investigative Ophthalmology & Visual Science, 43, 1270–1276.

    Google Scholar 

  • Cohen, L., Dehaene, S., Vinckier, F., Jobert, A., & Montavont, A. (2008). Reading normal and degraded words: Contribution of the dorsal and ventral visual pathways. NeuroImage, 40, 353–366.

    Article  PubMed  Google Scholar 

  • Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204.

    Article  PubMed  Google Scholar 

  • Danilova, M. V., & Bondarko, V. M. (2007). Foveal contour interactions and crowding effects at the resolution limit of the visual system. Journal of Vision, 7(2), 1–18.

    Article  PubMed  Google Scholar 

  • Dehane, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Science, 15(6), 254–262.

    Article  Google Scholar 

  • Dufau, S., Stevens, M., & Grainger, J. (2008). Windows executable software for the progressive demasking task. Behavior Research Methods, 40(1), 33–37.

    Article  PubMed  Google Scholar 

  • Facoetti, A., Trussardi, A., Ruffino, M., Lorusso, M. L., Cattaneo, C., Galli, R., & Zorzi, M. (2010). Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. Journal of Cognitive Neuroscience, 22(5), 1011–1025.

    Article  PubMed  Google Scholar 

  • Facoetti, A., Zorzi, M., Cestnick, L., Lorusso, M. L., Molteni, M., Paganoni, P., Umiltà, C. & Mascetti, G.G.. (2006). The relationship between visuo-spatial attention and nonword reading in developmental dyslexia. Cognitive Neuropsychology, 23(6), 841–855.

  • Grainger, J., & Segui, J. (1990). Neighborhood frequency effects in visual word recognition: A comparison of lexical decision and masked identification latencies. Perception & Psychophysics, 47, 191–198.

    Article  Google Scholar 

  • Grainger, J., Tydgat, I., & Isselé, J. (2010). Crowding affects letters and symbols differently. Journal of Experimental Psychology: Human Perception and Performance, 36, 673–688. doi:10.1037/a0016888

    PubMed  Google Scholar 

  • Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434–446.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jehee, J. F. M., Roelfsema, P. R., Deco, G., Murre, J. M. J., & Lamme, V. A. F. (2007). Interactions between higher and lower visual areas improve shape selectivity of higher level neurons- Explaining crowding phenomena. Brain Research, 1157, 167–176.

    Article  PubMed  Google Scholar 

  • Legge, G. E., Cheung, S. H., Yu, D., Chung, S. T. L., Lee, H. W., & Owens, D. P. (2007). The case for the visual span as a sensory bottleneck in reading. Journal of Vision, 7(2), 1–15.

    Article  Google Scholar 

  • Legge, G. E., Mansfield, J. S., & Chung, S. T. L. (2001). Psychophysics of reading. XX. Linking letter recognition to reading speed in central and peripheral vision. Vision Research, 41, 725–743.

    Article  PubMed  Google Scholar 

  • Martelli, M., Di Filippo, G., Spinelli, D., & Zoccolotti, P. (2009). Crowding, reading, and developmental dyslexia. Journal of Vision, 9, 1–18.

    Article  PubMed  Google Scholar 

  • McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88(5), 375.

    Article  Google Scholar 

  • Moll, K., & Jones, M. (2013). Naming fluency in dyslexic and nondyslexic readers: Differential effects of visual crowding in foveal, parafoveal, and peripheral vision. The Quarterly Journal of Experimental Psychology, 66(11), 2085–2091.

    Article  PubMed  Google Scholar 

  • Montani, V., Facoetti, A., & Zorzi, M. (2014). Spatial attention in written word perception. Frontiers in Human Neuroscience, 8, 42. doi:10.3389/fnhum.2014.00042

    Article  PubMed Central  PubMed  Google Scholar 

  • Moores, E., Cassim, R., & Talcott, J. B. (2011). Adults with dyslexia exhibit large effects of crowding, increased dependence on cues, and detrimental effects of distractors in visual search tasks. Neuropsychologia, 49, 3881–3890.

    Article  PubMed  Google Scholar 

  • O’Malley, S., & Besner, D. (2008). Reading aloud: Qualitative differences in the relation between stimulus quality and word frequency as a function of context. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(6), 1400.

    PubMed  Google Scholar 

  • Pelli, D. G., Robson, J. G., & Wilkins, A. J. (1988). The design of a new letter chart for measuring contrast sensitivity. Clinical Vision Sciences, 2, 187–199.

    Google Scholar 

  • Pelli, D. G., & Tillman, K. A. (2008). The uncrowded window of object recognition. Nature Neuroscience, 11(10), 1129–1135.

    Article  PubMed Central  PubMed  Google Scholar 

  • Perea, M., & Gomez, P. (2012). Increasing interletter spacing facilitates encoding of words. Psychonomic Bulletin & Review, 19(2), 332–338.

    Article  Google Scholar 

  • Perea, M., Moret-Tatay, C., & Gómez, P. (2011). The effects of interletter spacing in visual-word recognition. Acta Psychologica, 137, 345–351.

    Article  PubMed  Google Scholar 

  • Perea, M., Panadero, V., Moret-Tatay, C., & Gómez, P. (2012). The effects of inter-letter spacing in visual-word recognition: Evidence with young normal readers and developmental dyslexics. Learning and Instruction, 22, 420–430.

    Article  Google Scholar 

  • Perry, C., Ziegler, J., & Zorzi, M. (2007). Nested incremental modeling in the development of computational theories: The CDP+ model of reading aloud. Psychological Review, 114, 273–315.

    Article  PubMed  Google Scholar 

  • Perry, C., Ziegler, J. C., & Zorzi, M. (2010). Beyond single syllables: Large-scale modeling of reading aloud with the Connectionist Dual Process (CDP++) model. Cognitive Psychology, 61(2), 106–151.

    Article  PubMed  Google Scholar 

  • Perry, C., Ziegler, J. C., & Zorzi, M. (2013). A computational and empirical investigation of graphemes in reading. Cognitive Science, 37(5), 800–828.

    Article  PubMed  Google Scholar 

  • Perry, C., Ziegler, J. C., & Zorzi, M. (2014). CDP++.Italian: Modelling sublexical and supralexical inconsistency in a shallow orthography. PLoS ONE, 9(4), e94291.

    Article  PubMed Central  PubMed  Google Scholar 

  • R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124, 372–422.

    Article  PubMed  Google Scholar 

  • Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime 1.0. Pittsburgh, PA: Psychological Software Tools.

    Google Scholar 

  • Singmann, H. (2013). afex: Analysis of Factorial Experiments. R package version 0.6-82. http://CRAN.R-project.org/package=afex

  • Spinelli, D., De Luca, M., Judica, A., & Zoccolotti, P. (2002). Crowding effects on word identification in developmental dyslexia. Cortex, 38, 179–200.

    Article  PubMed  Google Scholar 

  • Tydgat, I., & Grainger, J. (2009). Serial position effects in the identification of letters, digits, and symbols. Journal of Experimental Psychology: Human Perception and Performance, 35, 480–498. doi:10.1037/a0013027

    PubMed  Google Scholar 

  • Weekes, B. S. (1997). Differential effects of number of letters on word and nonword naming latency. The Quarterly Journal of Experimental Psychology Section A, 50(2), 439–456.

    Article  Google Scholar 

  • Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15(4), 160–168.

    Article  PubMed Central  PubMed  Google Scholar 

  • Woods, R. J., Davis, K., & Scharff, L. F. V. (2005). Effects of typeface and font size on legibility for children. American Journal of Psychological Research, 1, 86–102.

    Google Scholar 

  • Yu, D., Cheung, S. H., Legge, G. E., & Chung, S. T. L. (2007). Effect of letter spacing on visual span and reading speed. Journal of Vision, 7, 1–10.

    Article  Google Scholar 

  • Ziegler, J. C., Perry, C., & Zorzi, M. (2009). Additive and interactive effects of stimulus degradation: No challenge for CDP+. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 306–311.

    PubMed  Google Scholar 

  • Ziegler, J. C., Perry, C., & Zorzi, M. (2014). Modelling reading development through phonological decoding and self-teaching: Implications for dyslexia. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1634), 20120397.

    Article  PubMed Central  Google Scholar 

  • Zorzi, M. (2010). The connectionist dual process (CDP) approach to modelling reading aloud. European Journal of Cognitive Psychology, 22(5), 836–860.

    Article  Google Scholar 

  • Zorzi, M., Barbiero, C., Facoetti, A., Lonciari, I., Carozzi, M., Montico, M., & Ziegler, J. C. (2012). Extra-large letter spacing improves reading in dyslexia. PNAS, 109(28), 11455–11459.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zorzi, M., Testolin, A., & Stoianov, I. P. (2013). Modeling language and cognition with deep unsupervised learning: A tutorial overview. Frontiers in Psychology, 4, 515. doi:10.3389/fpsyg.2013.00515

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the European Research Council (grant no. 210922) and the University of Padova (Stategic Grant 2013 "NEURAT") to M.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Zorzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montani, V., Facoetti, A. & Zorzi, M. The effect of decreased interletter spacing on orthographic processing. Psychon Bull Rev 22, 824–832 (2015). https://doi.org/10.3758/s13423-014-0728-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13423-014-0728-9

Keywords

Navigation