Skip to main content
Log in

The perception of Glass patterns by starlings (Sturnus vulgaris)

  • Brief Report
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

Glass patterns are structured dot stimuli used to investigate the visual perception of global form. Studies have demonstrated that humans and pigeons differ in their processing of circular versus linearly organized Glass patterns. To test whether this comparative difference is characteristic of birds as a phylogenetic class, we investigated for the first time how a passerine (starlings, Sturnus vulgaris) discriminated multiple Glass patterns from random-dot stimuli in a simultaneous discrimination. By examining acquisition, steady-state performance, and the effects of diminishing global coherence, it was found that the perception of Glass patterns by 5 starlings differed from human perception and corresponded to that established with pigeons. This suggests an important difference in how birds and primates are specialized in their processing of circular visual patterns, perhaps related to face perception, or in how these highly visual animals direct attention to the global and local components of spatially separated form stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bennett, A. T. D., Cuthill, I. C., Partridge, J. C., & Lunau, K. (1997). Ultraviolet plumage colors predict mate preferences in starlings. Proceedings of the National Academy of Science, 94(16), 8618–8621.

    Article  Google Scholar 

  • Bock, W. J., & Farrand, J., Jr. (1980). The number of species and genera of recent birds: A contribution to comparative systematics. American Museum Novitates, 2703, 1–29.

    Google Scholar 

  • Brown, J. W., Rest, J. S., Garcia-Moreno, J., Sorenson, M. D., & Mindell, D. P. (2008). Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biology, 6, 6. doi:10.1186/1741-7007-6-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Cavoto, K. K., & Cook, R. G. (2001). Cognitive precedence for local information in hierarchical stimulus processing by pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 27(1), 3–16. doi:10.1037/0097-7403.27.1.3

    PubMed  Google Scholar 

  • Chojnowski, J. L., Kimball, R. T., & Braun, E. L. (2008). Introns outperform exons in analyses of basal avian phylogeny using clathrin heavy chain genes. Gene, 410(1), 89–96. doi:10.1016/j.gene.2007.11.016

    Article  PubMed  Google Scholar 

  • Cook, R. G. (2001). Avian visual cognition retrieved from www.pigeon.psy.tufts.edu/avc

  • Cook, R. G., Qadri, M. A. J., Kieres, A., & Commons-Miller, N. (2012). Shape from shading in pigeons. Cognition, 124(3), 284–303. doi:10.1016/j.cognition.2012.05.007

    Article  PubMed  Google Scholar 

  • Dolan, T., & Fernández-Juricic, E. (2010). Retinal ganglion cell topography of five species of ground-foraging birds. Brain, Behavior and Evolution, 75(2), 111–121.

    Article  PubMed Central  PubMed  Google Scholar 

  • Emery, N. J. (2006). Cognitive ornithology: The evolution of avian intelligence. Philosophical Transactions of the Royal Society of London, 361, 23–43. doi:10.1098/rstb.2005.1736

    Article  PubMed Central  PubMed  Google Scholar 

  • Endler, J. A., Westcott, D. A., Madden, J. R., & Robson, T. (2005). Animal visual systems and the evolution of color patterns: Sensory processing illuminates signal evolution. Evolution, 59(8), 1795–1818.

    Article  PubMed  Google Scholar 

  • Feare, C. (1984). The starling. Oxford: Oxford University Press.

    Google Scholar 

  • Forkman, B. (1998). Hens use occlusion to judge depth in a two-dimensional picture. Perception, 27(7), 861–867. doi:10.1068/P270861

    Article  PubMed  Google Scholar 

  • Fujita, I., Tanaka, K., Ito, M., & Cheng, K. (1992). Columns for visual features of objects in monkey inferotemporal cortex. Nature, 360(6402), 343–346. doi:10.1038/360343a0

    Article  PubMed  Google Scholar 

  • Gallant, J. L., Braun, J., & Van Essen, D. C. (1993). Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science, 259(5091), 100–103.

    Article  PubMed  Google Scholar 

  • Ghim, M. M., & Hodos, W. (2006). Spatial contrast sensitivity of birds. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 192(5), 523–534.

    Article  PubMed  Google Scholar 

  • Glass, L. (1969). Moire effect from random dots. Nature, 223(5206), 578–580.

    Article  PubMed  Google Scholar 

  • Gutiérrez-Ibáñez, C., Iwaniuk, A. N., Moore, B. A., Fernández-Juricic, E., Corfield, J. R., Krilow, J. M., & Wylie, D. R. (2014). Mosaic and concerted evolution in the visual system of birds. PLoS ONE, 9(3), e90102.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hart, N. S. (2001). Variations in cone photoreceptor abundance and the visual ecology of birds. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 187(9), 685–697.

    Article  Google Scholar 

  • Hart, N. S., Partridge, J. C., & Cuthill, I. C. (2000). Retinal asymmetry in birds. Current Biology, 10(2), 115–117.

    Article  PubMed  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160(1), 106–154.

    Article  PubMed Central  PubMed  Google Scholar 

  • Husband, S., & Shimizu, T. (2001). Evolution of the avian visual system. In R. G. Cook (Ed.), Avian visual cognition. [On-line]. Available: www.pigeon.psy.tufts.edu/avc/husband/

  • Iwaniuk, A. N., & Hurd, P. L. (2005). The evolution of cerebrotypes in birds. Brain, Behavior and Evolution, 65(4), 215–230. doi:10.1159/000084313

    Article  PubMed  Google Scholar 

  • Jarvis, E., Güntürkün, O., Bruce, L., Csillag, A., Karten, H., Kuenzel, W., & Shimizu, T. (2005). Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience, 6(2), 151–159. doi:10.1038/nrn1606

    Article  PubMed  Google Scholar 

  • Jassik-Gerschenfeld, D., & Guichard, J. (1972). Visual receptive fields of single cells in the pigeon's optic tectum. Brain Research, 40, 303–317.

    Article  PubMed  Google Scholar 

  • Jones, M. P., Pierce, K. E., Jr., & Ward, D. (2007). Avian vision: A review of form and function with special consideration to birds of prey. Journal of Exotic Pet Medicine, 16(2), 69–87. doi:10.1053/j.jepm.2007.03.012

    Article  Google Scholar 

  • Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society, B: Biological Sciences, 361(1476), 2109–2128. doi:10.1098/rstb.2006.1934

    Article  PubMed Central  Google Scholar 

  • Kelly, D. M., Bischof, W. F., Wong-Wylie, D. R., & Spetch, M. L. (2001). Detection of glass patterns by pigeons and humans: Implications for differences in higher-level processing. Psychological Science, 12(4), 338–342.

    Article  PubMed  Google Scholar 

  • Martin, G. (1986). The eye of a passeriform bird, the European starling (Sturnus vulgaris): Eye movement amplitude, visual fields and schematic optics. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 159(4), 545–557.

    Article  Google Scholar 

  • Martin, G. (2007). Visual fields and their functions in birds. Journal of Ornithology, 148(S2), 547–562. doi:10.1007/s10336-007-0213-6

    Article  Google Scholar 

  • Qadri, M. A. J., Romero, L. M., & Cook, R. G. (in press). Shape-from-shading in European starlings (Sturnus vulgaris). Journal of Comparative Psychology

  • Swaddle, J. P., Che, J. P. K., & Clelland, R. E. (2004). Symmetry preference as a cognitive by-product in starlings. Behaviour, 141(4), 469–478. doi:10.1163/156853904323066748

    Article  Google Scholar 

  • Swaddle, J. P., & Pruett-Jones, S. (2001). Starlings can categorize symmetry differences in dot displays. American Naturalist, 158(3), 300–307. doi:10.1086/321323

    Article  PubMed  Google Scholar 

  • Swaddle, J. P., & Witter, M. S. (1995). Chest plumage, dominance and fluctuating asymmetry in female starlings. Proceedings of the Royal Society of London. Series B: Biological Sciences, 260(1358), 219–223. doi:10.1098/rspb.1995.0083

    Article  Google Scholar 

  • Templeton, J. J., & Gonzalez, D. P. (2004). Reverse lateralization of visual discriminative abilities in the European starling. Animal Behaviour, 67, 783–788. doi:10.1016/j.anbehav.2003.04.011

    Article  Google Scholar 

  • Vallortigara, G. (2006). The cognitive chicken: Visual and spatial cognition in a nonmammalian brain. In E. A. Wasserman & T. R. Zentall (Eds.), Comparative cognition: Experimental explorations of animal intelligence (pp. 71–86). New York, NY: Oxford University Press.

    Google Scholar 

  • Wilkinson, F., James, T. W., Wilson, H. R., Gati, J. S., Menon, R. S., & Goodale, M. A. (2000). An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings. Current Biology, 10(22), 1455–1458. doi:10.1016/S0960-9822(00)00800-9

    Article  PubMed  Google Scholar 

  • Wilson, H. R., & Wilkinson, F. (1998). Detection of global structure in Glass patterns: Implications for form vision. Vision Research, 38(19), 2933–2947.

    Article  PubMed  Google Scholar 

  • Wilson, H. R., Wilkinson, F., & Asaad, W. (1997). Concentric orientation summation in human form vision. Vision Research, 37(17), 2325–2330. doi:10.1016/S0042-6989(97)00104-1

    Article  PubMed  Google Scholar 

  • Zeigler, H. P., & Bischof, W. F. (1993). Vision, brain, and behavior in birds. Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad A. J. Qadri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Comprehensive sampling of displays used during training the starlings. The left labels indicate local group type, the top labels indicate global pattern, and the right labels indicate visual angle of the total pattern. (DOC 4028 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qadri, M.A.J., Cook, R.G. The perception of Glass patterns by starlings (Sturnus vulgaris). Psychon Bull Rev 22, 687–693 (2015). https://doi.org/10.3758/s13423-014-0709-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13423-014-0709-z

Keywords

Navigation