Skip to main content
Log in

Can the effects of temporal grouping explain the similarities and differences between free recall and serial recall?

  • Published:
Memory & Cognition Aims and scope Submit manuscript

Abstract

Temporal grouping can provide a principled explanation for changes in the serial position curves and output orders that occur with increasing list length in immediate free recall (IFR) and immediate serial recall (ISR). To test these claims, we examined the effects of temporal grouping on the order of recall in IFR and ISR of lists of between one and 12 words. Consistent with prior research, there were significant effects of temporal grouping in the ISR task with mid-length lists using serial recall scoring, and no overall grouping advantage in the IFR task with longer list lengths using free recall scoring. In all conditions, there was a general tendency to initiate recall with either the first list item or with one of the last four items, and then to recall in a forward serial order. In the grouped IFR conditions, when participants started with one of the last four words, there were particularly heightened tendencies to initiate recall with the first item of the most recent group. Moreover, there was an increased degree of forward-ordered transitions within groups than across groups in IFR. These findings are broadly consistent with Farrell’s model, in which lists of items in immediate memory are parsed into distinct groups and participants initiate recall with the first item of a chosen cluster, but also highlight shortcomings of that model. The data support the claim that grouping may offer an important element in the theoretical integration of IFR and ISR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Data and simulations most relevant to this specific explanation are outlined in the Supplementary materials.

  2. A series of 2 (task: IFR and ISR) ×2 (grouping: grouped and ungrouped) ×n (serial position: 1-n) mixed ANOVAs, where n is the list length on the P(FR) data at each list length can be found in supplementary materials.

  3. A series of 2 (task: IFR and ISR) ×2 (grouping: grouped and ungrouped) ×n (serial position: 1-n) mixed ANOVAs, where n is the list length for both FR and relative SR scoring at each list length can be found in supplementary materials, for both all data, and for just the proportion of trials in which P(FR=SP1) and P(FR=Last 4).

References

  • Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M. (1998). An integrated theory of list memory. Journal of Memory and Language, 38, 341–380.

    Article  Google Scholar 

  • Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 225, 82–90.

    Article  PubMed  Google Scholar 

  • Baddeley, A. D. (1966). Short-term memory for word sequences as a function of acoustic, semantic and formal similarity. Quarterly Journal of Experimental Psychology, 18, 362–365.

    Article  PubMed  Google Scholar 

  • Baddeley, A. D. (1986). Working Memory. Oxford: Clarendon Press.

    Google Scholar 

  • Baddeley, A. (2012). Working memory: Theories, models and controversies. Annual Review of Psychology, 63, 1–29.

    Article  PubMed  Google Scholar 

  • Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), Recent advances in learning and motivation (Vol. 8, pp. 47–90). London: Academic Press.

    Google Scholar 

  • Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-term memory. Journal of Verbal Learning and Verbal Behavior, 14, 575–589.

    Article  Google Scholar 

  • Beaman, C. P., & Morton, J. (2000). The separate but related origins of the recency and the modality effect in free recall. Cognition, 77, B59–B65.

    Article  PubMed  Google Scholar 

  • Bhatarah, P., Ward, G., Smith, J., & Hayes, L. (2009). Examining the relationship between free recall and immediate serial recall: Similar patterns of rehearsal and similar effects of word length, presentation rate, and articulatory suppression. Memory and Cognition, 37, 689–713.

    Article  PubMed  Google Scholar 

  • Bhatarah, P., Ward, G., & Tan, L. (2008). Examining the relationship between free recall and immediate serial recall: The serial nature of recall and the effect of test expectancy. Memory & Cognition, 36, 20–34.

    Article  Google Scholar 

  • Botvinick, M. M., & Plaut, D. C. (2006). Short-term memory for serial order: A recurrent neural network model. Psychological Review, 113, 201–233.

    Article  PubMed  Google Scholar 

  • Bower, G. H. (1970). Organizational factors in memory. Cognitive Psychology, 1, 18–46.

    Article  Google Scholar 

  • Broadbent, D. E. (1975). The magic number seven after fifteen years. In A. Kennedy & A. Wilkes (Eds.), Studies in long-term memory (pp. 3–18). Oxford: John Wiley & Sons.

    Google Scholar 

  • Brown, G. D. A., Chater, N., & Neath, I. (2008). Serial and free recall: Common effects and common mechanisms? A reply to Murdock (2008). Psychological Review, 115, 781–785.

    Article  Google Scholar 

  • Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114, 539–576.

    Article  PubMed  Google Scholar 

  • Brown, G. D. A., Preece, T., & Hulme, C. (2000). Oscillator-based memory for serial order. Psychological Review, 107, 127–181.

    Article  PubMed  Google Scholar 

  • Burgess, N., & Hitch, G. J. (1999). Memory for serial order: A network model of the phonological loop and its timing. Psychological Review, 106, 551–581.

    Article  Google Scholar 

  • Burgess, N., & Hitch, G. J. (2006). A revised model of short-term memory and long-term learning of verbal sequences. Journal of Memory and Language, 55, 627–652.

    Article  Google Scholar 

  • Chen, Z., & Cowan, N. (2009). How verbal memory loads consume attention. Memory & Cognition, 37, 829–836.

    Article  Google Scholar 

  • Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information processing system. Psychological Bulletin, 104, 163–191.

    Article  PubMed  Google Scholar 

  • Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of Working Memory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Cowan, N. (2000). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–185.

    Article  Google Scholar 

  • Cowan, N. (2005). Working memory capacity. Hove: Psychology Press.

    Book  Google Scholar 

  • Cowan, N., Saults, J. S., Elliott, E. M., & Moreno, M. V. (2002). Deconfounding serial recall. Journal of Memory and Language, 46, 153–177.

    Article  Google Scholar 

  • Crannell, C. W., & Parrish, J. M. (1957). A comparison of immediate memory span for digits, letters, and words. Journal of Psychology, 44, 319–327.

    Article  Google Scholar 

  • Davelaar, E. J., Goshen-Gottstein, Y., Ashkenazi, A., Haarmann, H. J., & Usher, M. (2005). The demise of short-term memory revisited: Empirical and computational investigations of recency effects. Psychological Review, 112, 3–42.

    Article  PubMed  Google Scholar 

  • Drewnowski, A., & Murdock, B. B., Jr. (1980). The role of auditory features in memory span for words. Journal of Experimental Psychology: Human Learning and Memory, 6, 319–332.

    Google Scholar 

  • Farrell, S. (2010). Dissociating conditional recency in immediate and delayed free recall: A challenge for unitary models of recency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 324–347.

    PubMed  Google Scholar 

  • Farrell, S. (2012). Temporal clustering and sequencing in short-term memory and episodic memory. Psychological Review, 119, 223–271.

    Article  PubMed  Google Scholar 

  • Farrell, S., & Lewandowsky, S. (2002). An endogenous distributed model of ordering in serial recall. Psychonomic Bulletin & Review, 9, 59–79.

    Article  Google Scholar 

  • Farrell, S., & Lewandowsky, S. (2004). Modelling transposition latencies: Constraints for theories of serial order memory. Journal of Memory and Language, 51, 115–135.

    Article  Google Scholar 

  • Frankish, C. (1985). Modality-specific grouping effects in short-term memory. Journal of Memory and Language, 24, 200–209.

    Article  Google Scholar 

  • Frankish, C. (1989). Perceptual organization and precategorical acoustic storage. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 469–479.

    PubMed  Google Scholar 

  • Friendly, M., Franklin, P. E., Hoffman, D., & Rubin, D. C. (1982). Norms for the Toronto Word Pool: Norms for imagery, concreteness, orthographic variables and grammatical usage for 1,080 words. Behavior Research Methods & Instrumentation, 14, 375–399.

    Article  Google Scholar 

  • Gianutsos, R. (1972). Free recall of grouped words. Journal of Experimental Psychology, 95, 419–428.

    Article  Google Scholar 

  • Glanzer, M. (1972). Storage mechanisms in recall. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 5, pp. 129–193). New York: Academic Press.

    Google Scholar 

  • Golomb, J. D., Peelle, J. E., Addis, K. M., Kahana, M. J., & Wingfield, A. (2008). Effects of adult aging on utilization of temporal and semantic associations during free and serial recall. Memory & Cognition, 36, 947–956.

    Article  Google Scholar 

  • Grenfell-Essam, R., & Ward, G. (2012). Examining the relationship between free recall and immediate serial recall: The role of list length, strategy use, and test expectancy. Journal of Memory and Language, 67, 106–148.

    Article  Google Scholar 

  • Grenfell-Essam, R., Ward, G., & Tan, L. (2013). The role of rehearsal on the output order of immediate free recall of short and long lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 317–347.

    PubMed  Google Scholar 

  • Grossberg, S., & Pearson, L. R. (2008). Laminar cortical dynamics of cognitive and motor working memory, sequence learning and performance: Toward a unified theory of how the cerebral cortex works. Psychological Review, 115, 677–732.

    Article  PubMed  Google Scholar 

  • Henson, R. N. A. (1996). Short-term memory for serial order (Unpublished doctoral dissertation). Cambridge: University of Cambridge.

    Google Scholar 

  • Henson, R. N. A. (1998). Short-term memory for serial order: The start-end model of serial recall. Cognitive Psychology, 36, 73–137.

    Article  PubMed  Google Scholar 

  • Henson, R. N. (1999). Positional information in short-term memory: Relative or absolute? Memory & Cognition, 27, 915–927.

    Article  Google Scholar 

  • Hitch, G. J., Burgess, N., Towse, J. N., & Culpin, V. (1996). Temporal grouping effects in immediate recall: A working memory analysis. Quarterly Journal of Experimental Psychology, 49A, 116–139.

    Article  Google Scholar 

  • Howard, M. W., & Kahana, M. J. (1999). Contextual variability and serial position effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 923–941.

    PubMed  Google Scholar 

  • Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of Mathematical Psychology, 46, 269–299.

    Article  Google Scholar 

  • Hurlstone, M. J., Hitch, G. J., & Baddeley, A. D. (2014). Memory for serial order across domains: An overview of the literature and directions for future research. Psychological Bulletin, 140, 339–373.

    Article  PubMed  Google Scholar 

  • Johnson, N. F. (1972). Organization and the concept of a memory code. In A. W. Melton & E. Martin (Eds.), Coding processes in human memory (pp. 125–159). Washington: Winston.

    Google Scholar 

  • Kahana, M. J. (1996). Associative retrieval processes in free recall. Memory & Cognition, 24, 103–109.

    Article  Google Scholar 

  • Kahana, M. J. (2012a). Auditory Toronto word pool. Available : http://memory.psych.upenn.edu/WordPools (11th September, 2012)

  • Kahana, M. J. (2012b). Foundations of Human Memory. New York: Oxford University Press.

    Google Scholar 

  • Kahana, M. J., Howard, M. J., & Polyn, S. M. (2008). Associative retrieval processes in episodic memory. In J. Byrne (Series Ed.) H. L. Roediger, III, Vol. (Ed.), Learning and memory: A comprehensive reference. Vol 2: Cognitive psychology of memory. Oxford: Elsevier.

  • Kahana, M. J., & Jacobs, J. (2000). Interresponse times in serial recall: Effects of intraserial repetition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1188–1197.

    PubMed  Google Scholar 

  • Laming, D. (1999). Testing the idea of distinct storage mechanisms in memory. International Journal of Psychology, 34, 419–426.

    Article  Google Scholar 

  • Laming, D. (2006). Predicting free recalls. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 1146–1163.

    PubMed  Google Scholar 

  • Lewandowsky, S., & Farrell, S. (2008). Short-term memory: New data and a model. Psychology of Learning and Motivation, 49, 1–48.

    Article  Google Scholar 

  • Madigan, S. A. (1980). The serial position curve in immediate serial recall. Bulletin of the Psychonomic Society, 15, 335–338.

    Article  Google Scholar 

  • Maybery, M. T., Parmentier, F. B. R., & Jones, D. M. (2002). Grouping of list items reflected in the timing of recall: Implications for models of serial verbal memory. Journal of Memory and Language, 47, 360–385.

    Article  Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

    Article  PubMed  Google Scholar 

  • Murdock, B. B., Jr. (1962). The serial position effect of free recall. Journal of Experimental Psychology, 64, 482–488.

    Article  Google Scholar 

  • Page, M. P. A., & Norris, D. (1998). The primacy model: A new model of immediate serial recall. Psychological Review, 105, 761–781.

    Article  PubMed  Google Scholar 

  • Page, M. P. A., & Norris, D. G. (2003). The irrelevant sound effect: What needs modeling, and a tentative model. The Quarterly Journal of Experimental Psychology, 56A, 1289–1300.

    Article  Google Scholar 

  • Parmentier, F. B. R., & Maybery, M. T. (2008). Equivalent effects of grouping by time, voice and location on response timing in verbal serial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1349–1355.

    PubMed  Google Scholar 

  • Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of associative memory. Psychological Review, 88, 93–134.

    Article  Google Scholar 

  • Reeves, C., Schmauder, A. R., & Morris, R. K. (2000). Stress grouping improves performance on an immediate serial list recall task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1638–1654.

    PubMed  Google Scholar 

  • Rundus, D. (1971). Analysis of rehearsal processes in free recall. Journal of Experimental Psychology, 89, 63–77.

    Article  Google Scholar 

  • Ryan, J. (1969a). Grouping and short-term memory: Different means and patterns of groups. Quarterly Journal of Experimental Psychology, 21, 137–147.

    Article  PubMed  Google Scholar 

  • Ryan, J. (1969b). Temporal grouping, rehearsal and short-term memory. Quarterly Journal of Experimental Psychology, 21, 148–155.

    Article  PubMed  Google Scholar 

  • Spurgeon, J., Ward, G., & Matthews, W. J. (2014). Examining the relationship between immediate serial recall and immediate free recall: Common effects of phonological loop variables but only limited evidence for the phonological loop. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 1110–1141.

    PubMed  Google Scholar 

  • Tan, L., & Ward, G. (2000). A recency-based account of primacy effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1589–1625.

    PubMed  Google Scholar 

  • Tzeng, O. J. L., & Hung, D. I. (1973). Intralist organization and subsequent free recalls. Journal of Experimental Psychology, 98, 119–124.

    Article  Google Scholar 

  • Ward, G., Tan, L., & Grenfell-Essam, R. (2010). Examining the relationship between free recall and immediate serial recall: The effects of list length and output order. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1207–1241.

    PubMed  Google Scholar 

  • Waugh, N. C., & Norman, D. A. (1965). Primary memory. Psychological Review, 72, 89–104.

    Article  PubMed  Google Scholar 

  • Wickelgren, W. A. (1967). Rehearsal grouping and hierarchical organisation of serial position cues in short-term memory. Quarterly Journal of Experimental Psychology, 19, 97–102.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jessica Spurgeon or Geoff Ward.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.54 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spurgeon, J., Ward, G., Matthews, W.J. et al. Can the effects of temporal grouping explain the similarities and differences between free recall and serial recall?. Mem Cogn 43, 469–488 (2015). https://doi.org/10.3758/s13421-014-0471-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13421-014-0471-5

Keywords

Navigation