Skip to main content
Log in

Musical chords and emotion: Major and minor triads are processed for emotion

  • Published:
Cognitive, Affective, & Behavioral Neuroscience Aims and scope Submit manuscript

Abstract

Musical chords are arguably the smallest building blocks of music that retain emotional information. Major chords are generally perceived as positive- and minor chords as negative-sounding, but there has been debate concerning how early these emotional connotations may be processed. To investigate this, emotional facial stimuli and musical chord stimuli were simultaneously presented to participants, and facilitation of processing was measured via event-related potential (ERP) amplitudes. Decreased amplitudes of the P1 and N2 ERP components have been found to index the facilitation of early processing. If simultaneously presented musical chords and facial stimuli are perceived at early stages as belonging to the same emotional category, then early processing should be facilitated for these congruent pairs, and ERP amplitudes should therefore be decreased as compared to the incongruent pairs. ERPs were recorded from 30 musically naive participants as they viewed happy, sad, and neutral faces presented simultaneously with a major or minor chord. When faces and chords were presented that contained congruent emotional information (happy–major or sad–minor), processing was facilitated, as indexed by decreased N2 ERP amplitudes. This suggests that musical chords do possess emotional connotations that can be processed as early as 200 ms in naive listeners. The early stages of processing that are involved suggest that major and minor chords have deeply connected emotional meanings, rather than superficially attributed ones, indicating that minor triads possess negative emotional connotations and major triads possess positive emotional connotations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altenmüller, E., Schürmann, K., Lim, V. K., & Parlitz, D. (2002). Hits to the left, flops to the right: Different emotions during listening to music are reflected in cortical lateralisation patterns. Neuropsychologia, 40, 2242–2256. doi:10.1016/S0028-3932(02)00107-0

    PubMed  Google Scholar 

  • Balconi, M., & Lucchiari, C. (2007). Consciousness and emotional facial expression recognition. Journal of Psychophysiology, 21, 100–108. doi:10.1027/0269-8803.21.2.100

    Google Scholar 

  • Balconi, M., & Pozzoli, U. (2003). Face-selective processing and the effect of pleasant and unpleasant emotional expressions on ERP correlates. International Journal of Psychophysiology, 49, 67–74. doi:10.1016/S0167-8760(03)00081-3

    PubMed  Google Scholar 

  • Balconi, M., & Pozzoli, U. (2012). Encoding of emotional facial expressions in direct and incidental tasks: An event-related potentials N200 effect. Journal of Neurotherapy, 16, 92–109. doi:10.1080/10874208.2012.677659

    Google Scholar 

  • Balkwill, L.-L., & Thompson, W. F. (1999). A cross-cultural investigation of the perception of emotion in music: Psychophysical and cultural cues. Music Perception, 17, 43–64. doi:10.2307/40285811

    Google Scholar 

  • Baumgartner, T., Esslen, M., & Jäncke, L. (2006). From emotion perception to emotion experience: Emotions evoked be pictures and classical music. International Journal of Psychophysiology, 60, 34–43. doi:10.1016/j.ijpsycho.2005.04.007

    PubMed  Google Scholar 

  • Beauchamp, M. S., Lee, K. E., Argall, B. D., & Martin, A. (2004). Integration of auditory and visual information about objects in superior temporal sulcus. Neuron, 41, 809–823. doi:10.1016/S0896-6273(04)00070-4

    PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289–300. doi:10.1016/S0166-4328(01)00297-2

    Google Scholar 

  • Besson, M., & Faïta, F. (1995). An event-related potential (ERP) study of musical expectancy: Comparison of musicians with nonmusicians. Journal of Experimental Psychology: Human Perception and Performance, 21, 1278–1296. doi:10.1037/0096-1523.21.6.1278

    Google Scholar 

  • Bigand, E., Filipic, S., & Lalitte, P. (2005). The time course of emotional responses to music. Annals of the New York Academy of Sciences, 1060, 429–437. doi:10.1196/annals.1360.036

    PubMed  Google Scholar 

  • Blau, V. C., Maurer, U., Tottenham, N., & McCandliss, B. D. (2007). The face-specific N170 component is modulated by emotional facial expression. Behavioral and Brain Functions, 3, 7–20. doi:10.1186/1744-9081-3-7

    PubMed Central  PubMed  Google Scholar 

  • Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98, 11818–11823. doi:10.1073/pnas.191355898

    Google Scholar 

  • Blood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2, 382–387. doi:10.1038/7299

    PubMed  Google Scholar 

  • Bombari, D., Schmid, P. C., Mast, M. S., Birri, S., Mast, F. W., & Lobmaier, J. S. (2013). Emotion recognition: The role of featural and configural face information. Quarterly Journal of Experimental Psychology, 66, 2426–2442. doi:10.1080/17470218.2013.789065

    Google Scholar 

  • Bostanov, V., & Kotchoubey, B. (2004). Recognition of affective prosody: Continuous wavelet measures of event-related brain potentials to emotional exclamations. Psychophysiology, 41, 259–268. doi:10.1111/j.1469-8986.2003.00142.x

    PubMed  Google Scholar 

  • Calvo, M. G., & Nummenmaa, L. (2007). Processing of unattended emotional visual scenes. Journal of Experimental Psychology: General, 136, 347–369. doi:10.1037/0096-3445.136.3.347

    Google Scholar 

  • Cohen, A. J. (2010). Music as a source of emotion in film. In P. N. Juslin & J. A. Sloboda (Eds.), Handbook of music and emotion: Theory, research, applications (pp. 879–908). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Cook, N. D. (2007). The sound symbolism of major and minor harmonies. Music Perception, 24, 315–319. doi:10.1525/MP.2007.24.3.315

    Google Scholar 

  • Cook, N. D. (2009). Harmony perception: Harmoniousness is more than the sum of interval consonance. Music Perception, 27, 25–41. doi:10.1525/MP.2009.27.1.25

    Google Scholar 

  • Cook, N. D. (2012). Harmony, perspective, and triadic cognition. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Cook, N. D., & Fujisawa, T. X. (2006). The psychophysics of harmony perception: Harmony is a three-tone phenomenon. Empirical Musicology Review, 1, 106–124.

    Google Scholar 

  • Cook, N. D., Fujisawa, T. X., & Takami, K. (2006). Evaluation of the affective valence of speech using pitch substructure. IEEE Transactions on Audio, Speech, and Language Processing, 14, 142–151. doi:10.1109/TSA.2005.854115

    Google Scholar 

  • Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorial in Quantitative Methods for Psychology, 1, 42–45.

    Google Scholar 

  • Crowder, R. G. (1984). Perception of the major/minor distinction: I. Historical and theoretical foundations. Psychomusicology, 4, 3–12.

    Google Scholar 

  • Davidson, R. J., Schwartz, G. E., Pugash, E., & Bromfield, E. (1976). Sex differences in patterns of EEG asymmetry. Biological Psychology, 4, 119–138. doi:10.1016/0301-0511(76)90012-0

    PubMed  Google Scholar 

  • Dowling, W. J., & Harwood, D. L. (1986). Music cognition. San Diego, CA: Academic Press.

    Google Scholar 

  • Eimer, M., Goschke, T., Schlaghecken, F., & Stürmer, B. (1996). Explicit and implicit learning of event sequences: Evidence from event-related brain potentials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 4, 970–987. doi:10.1037/0278-7393.22.4.970

    Google Scholar 

  • Eimer, M., & Holmes, A. (2007). Event-related brain potential correlates of emotional face processing. Neuropsychologia, 45, 15–31. doi:10.1016/j.neuropsychologia.2006.04.022

    PubMed Central  PubMed  Google Scholar 

  • Eimer, M., Holmes, A., & McGlone, F. P. (2003). The role of spatial attention in the processing of facial expression: An ERP study of rapid brain responses to six basic emotions. Cognitive, Affective, & Behavioural Neuroscience, 3, 97–110. doi:10.3758/CABN.3.2.97

    Google Scholar 

  • Ekman, P., & Friesen, W. (1976). Pictures of facial affect. Palo Alto, CA: Consulting Psychologists Press.

    Google Scholar 

  • Eschrich, S., Münte, T. F., & Altenmüller, E. O. (2008). Unforgettable film music: The role of emotion in episodic long-term memory for music. BMC Neuroscience, 9, 48. doi:10.1186/1471-2202-9-48

    PubMed Central  PubMed  Google Scholar 

  • Fadiga, L., Craighero, L., & Roy, A. (2006). Broca’s region: A speech area? In Y. Grodzinsky & K. Amunts (Eds.), Broca’s region (pp. 137–152). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London, UK: Sage.

    Google Scholar 

  • Fishman, Y. I., Volkov, I. O., Noh, M. D., Garell, C., Bakken, H., Arezzo, J. C., & Steinschnieder, M. (2001). Consonance and dissonance of musical chords: Neural correlates in auditory cortex of monkeys and humans. Journal of Neurophysiology, 86, 2761–2788.

    PubMed  Google Scholar 

  • Fritz, T., & Koelsch, S. (2008). The role of semantic association and emotional contagion for the induction of emotion with music. Behavioral and Brain Sciences, 31, 579–580. doi:10.1017/S0140525X08005347

    Google Scholar 

  • Gagnon, L., & Peretz, I. (2003). Mode and tempo relative contributions to “happy–sad” judgements in equitone melodies. Cognition and Emotion, 17, 25–40. doi:10.1080/02699930302279

    Google Scholar 

  • Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23, 9240–9245. doi:10.1016/S1053-8119(01)92488-7

    PubMed  Google Scholar 

  • Giard, M. H., & Peronnet, F. (1999). Auditory–visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11, 473–490. doi:10.1162/089892999563544

    PubMed  Google Scholar 

  • Grewe, O., Nagel, F., Kopiez, R., & Altenmüller, E. (2007). Emotions over time: Synchronicity and development of subjective, physiological, and facial affective reactions to music. Emotion, 7, 774–788. doi:10.1037/1528-3542.7.4.774

    PubMed  Google Scholar 

  • Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9, 416–423. doi:10.1016/j.tics.2005.07.004

    PubMed  Google Scholar 

  • Hajcak, G., & Olvet, D. M. (2008). The persistence of attention to emotion: Brain potentials during and after picture presentation. Emotion, 8, 250–255. doi:10.1037/1528-3542.8.2.250

    PubMed  Google Scholar 

  • Halpern, A. R., Martin, J. S., & Reed, T. D. (2008). An ERP study of major-minor classification in melodies. Music Perception, 25, 181–191. doi:10.1525/MP.2008.25.3.181

    Google Scholar 

  • Heller, W. (1993). Neuropsychological mechanisms of individual differences in emotion, personality, and arousal. Neuropsychology, 7, 476–489. doi:10.1037/0894-4105.7.4.476

    Google Scholar 

  • Helmholtz, H. von. (1954). On the sensations of tone as a physiological basis for the theory of music (A. J. Ellis, Ed.; 2nd English ed.). New York, NY: Dover. (Original work published 1877)

  • Herring, D. R., Taylor, J. H., White, K. R., & Crites, S. L. (2011). Electrophysiological responses to evaluative priming: The LPP is sensitive to incongruity. Emotion, 11, 794–806. doi:10.1037/a0022804

    PubMed  Google Scholar 

  • Hoch, L., & Tillmann, B. (2010). Laterality effects for musical structure processing: A dichotic listening study. Neuropsychology, 24, 661–666. doi:10.1037/a0019653

    PubMed  Google Scholar 

  • Howard, R. C. (2001). Bringing brain events to mind: Functional systems and brain event-related potentials. Journal of Psychophysiology, 15, 69–79. doi:10.1027/0269-8803.15.2.69

    Google Scholar 

  • Hsieh, S., Hornberger, M., Piguet, O., & Hodges, J. R. (2012). Brain correlates of musical and facial emotion recognition: Evidence from the dementias. Neuropsychologia, 50, 1814–1822. doi:10.1016/j.neuropsychologia.2012.04.006

    PubMed  Google Scholar 

  • Jasper, H. H. (1958). The ten twenty electrode system of the international federation. Electroencephalography and Clinical Neuropsychology, 10, 371–375. doi:10.1016/0013-4694(58)90053-1

    Google Scholar 

  • Joanisse, M. F., Zevin, J. D., & McCandliss, B. D. (2007). Brain mechanisms implicated in the preattentive categorization of speech sounds revealed using fMRI and a short-interval habituation trial paradigm. Cerebral Cortex, 17, 2084–2093. doi:10.1093/cercor/bhl124

    PubMed  Google Scholar 

  • Jongsma, M. L. A., Eichele, T., Van Rijn, C. M., Coenen, A. M. L., Hugdahl, K., Nordby, H., & Quiroga, R. Q. (2006). Tracking pattern learning with single-trial event-related potentials. Clinical Neurophysiology, 117, 1957–1973. doi:10.1016/j.clinph.2006.05.012

    PubMed  Google Scholar 

  • Joyce, C., & Rossion, B. (2005). The face-sensitive N170 and VPP components manifest the same brain processes: The effect of reference electrode site. Clinical Neurophysiology, 116, 2613–2631. doi:10.1016/j.clinph.2005.07.005

    PubMed  Google Scholar 

  • Juslin, P. N., Liljeström, S., Västfjäll, D., Barradas, G., & Silva, A. (2008). An experience sampling study of emotional reactions to music: Listener, music, and situation. Emotion, 8, 668–683. doi:10.1037/a0013505

    PubMed  Google Scholar 

  • Juslin, P. N., Liljeström, S., Västfjäll, D., & Lundqvist, L. (2010). How does music evoke emotions? Exploring the underlying mechanisms. In P. N. Juslin & J. A. Sloboda (Eds.), Handbook of music and emotion: Theory, research, applications (pp. 605–642). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Juslin, P. N., & Västfjäll, D. (2008). Emotional responses to music: The need to consider underlying mechanisms. Behavioural and Brain Sciences, 31, 559–621. doi:10.1017/S0140525X08005293

    Google Scholar 

  • Kestenbaum, R. (1992). Feeling happy versus feeling good: The processing of discrete and global categories of emotional expressions by children and adults. Developmental Psychology, 28, 1132–1142. doi:10.1037/0012-1649.28.6.1132

    Google Scholar 

  • Klein, M. E., & Zatorre, R. J. (2011). A role for the right superior temporal sulcus in categorical perception of musical chords. Neuropsychologia, 49, 878–887. doi:10.1016/j.neuropsychologia.2011.01.008

    PubMed  Google Scholar 

  • Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005). Adults and children processing music: An fMRI study. NeuroImage, 25, 1068–1076. doi:10.1016/j.neuroimage.2004.12.050

    PubMed  Google Scholar 

  • Koelsch, S., Gunter, T., Friederici, A. D., & Schröger, E. (2000). Brain indices of music processing: “Nonmusicians” are musical. Journal of Cognitive Neuroscience, 12, 520–541. doi:10.1162/089892900562183

    PubMed  Google Scholar 

  • Koelsch, S., Maess, B., Grossmann, T., & Friederici, A. D. (2003). Electric brain responses reveal gender differences in music processing. NeuroReport, 14, 709–713. doi:10.1097/ 01.wnr.0000065762.60383.67

    PubMed  Google Scholar 

  • Koelsch, S., Schröger, E., & Tervaniemi, M. (1999). Superior pre-attentive auditory processing in musicians. NeuroReport, 10, 1309–1313. doi:10.1097/00001756-199904260-00029

    PubMed  Google Scholar 

  • Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews. Neuroscience, 11, 599–605. doi:10.1038/nrn2882

    PubMed  Google Scholar 

  • Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207, 203–205. doi:10.1126/science.7350657

    PubMed  Google Scholar 

  • Laukka, P., Eerola, T., Thinguam, N. S., Yamasaki, T., & Beller, G. (2013). Universal and culture-specific factors in the recognition and performance of musical affect expressions. Emotion, 13, 434–449. doi:10.1037/a0031388

    PubMed  Google Scholar 

  • Levett, C., & Martin, F. (1992). The relationship between complex music stimuli and the late components of the event-related potential. Psychomusicology, 11, 125–140. doi:10.1037/h0094126

    Google Scholar 

  • Liebenthal, E., Binder, J. R., Spitzer, S. M., Possing, E. T., & Medler, D. A. (2005). Neural substrates of phonemic perception. Cerebral Cortex, 15, 1621–1631. doi:10.1093/cercor/bhi040

    PubMed  Google Scholar 

  • Lima, C. F., & Castro, S. L. (2011). Speaking to the trained ear: Musical expertise enhances the recognition of emotions in speech prosody. Emotion, 11, 1021–1031. doi:10.1037/a0024521

    PubMed  Google Scholar 

  • Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subjects designs. Psychonomic Bulletin & Review, 1, 476–490. doi:10.3758/BF03210951

    Google Scholar 

  • Macar, F., & Vidal, F. (2004). Event-related potentials as indices of time processing: A review. Journal of Psychophysiology, 18, 89–104. doi:10.1027/0269-8803.18.23.89

    Google Scholar 

  • Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001). Musical syntax is processed in Broca’s area: An MEG study. Nature Neuroscience, 4, 540–545. doi:10.1016/S1053-8119(00)90990-X

    PubMed  Google Scholar 

  • McDermott, J. (2008). The evolution of music. Nature, 453, 287–288. doi:10.1038/453287a

    PubMed  Google Scholar 

  • McGettigan, C., Faulkner, A., Altarelli, I., Obleser, J., Baverstock, H., & Scott, S. K. (2012). Speech comprehension aided by multiple modalities: Behavioural and neural interactions. Neuropsychologia, 50, 762–776. doi:10.1016/j.neuropsychologia.2012.01.010

    PubMed Central  PubMed  Google Scholar 

  • Müller, R. A., Kleinhans, N., & Courchesne, E. (2001). Broca’s are and the discrimination of frequency transitions: A functional MRI study. Brain and Language, 76, 70–76. doi:10.1006/brln.2000.2398

    PubMed  Google Scholar 

  • Murphy, F. C., Nimmo-Smith, I., & Lawrence, A. D. (2003). Functional neuroanatomy of emotions: A meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3, 207–233. doi:10.3758/CABN.3.3.207

    Google Scholar 

  • Naruse, S., Hashimoto, T., Mori, K., Tsuda, Y., Takahara, M., & Kagami, S. (2013). Developmental changes in facial expression recognition in Japanese school-age children. Journal of Medical Investigation, 60, 114–120.

    PubMed  Google Scholar 

  • Nygaard, L. C., & Queen, J. S. (2008). Communicating emotion: Linking affective prosody and word meaning. Journal of Experimental Psychology: Human Perception and Performance, 34, 1017–1030. doi:10.1037/0096-1523.34.4.1017

    PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113. doi:10.1016/0028-3932(71)90067-4

    PubMed  Google Scholar 

  • Palermo, R., & Coltheart, M. (2004). Photographs of facial expression: Accuracy, response times, and ratings of intensity. Behavior Research Methods, Instruments, & Computers, 36, 634–638. doi:10.3758/BF03206544

    Google Scholar 

  • Pallesen, K. J., Brattico, E., Bailey, C., Korvenoja, A., Koivisto, J., Gjedde, A., & Carlson, S. (2005). Emotion processing of major, minor, and dissonant chords. Annals of the New York Academy of Sciences, 1060, 450–453. doi:10.1196/annals.1360.047

    PubMed  Google Scholar 

  • Parker, B. (2009). Good vibrations: The physics of music. Baltimore, MD: John Hopkins University Press.

    Google Scholar 

  • Patel, A. D. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6, 674–681. doi:10.1038/nn1082

    PubMed  Google Scholar 

  • Paulmann, S., Jessen, S., & Kotz, S. A. (2009). Investigating the multimodal nature of human communication: Insights from ERPs. Journal of Psychophysiology, 23, 63–76. doi:10.1027/0269-8803.23.2.63

    Google Scholar 

  • Peretz, I., Gagnon, L., & Bouchard, B. (1998). Music and emotion: Perceptual determinants, immediacy, and isolation after brain damage. Cognition, 68, 111–141. doi:10.1016/S0010-0277(98)00043-2

    PubMed  Google Scholar 

  • Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56, 89–114. doi:10.1146/annurev.psych.56.091103.070225

    PubMed  Google Scholar 

  • Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37, 127–152. doi:10.1111/1469-8986.3720127

    PubMed  Google Scholar 

  • Pierce, J. (1999). Consonance and scales. In P. R. Cook (Ed.), Music, cognition, and computerized sound: An introduction to psychoacoustics (pp. 167–185). Cambridge, MA: MIT Press.

    Google Scholar 

  • Ross, E. D., Thompson, R. D., & Yenkosky, J. (1997). Lateralization of affective prosody in brain and the callosal integration of hemispheric language functions. Brain and Language, 56, 27–54. doi:10.1006/brln.1997.1731

    PubMed  Google Scholar 

  • Schmidt, L. A., & Trainor, L. J. (2001). Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cognition and Emotion, 15, 487–500. doi:10.1080/0269993004200187

    Google Scholar 

  • Schulkind, M. D., Hennis, L. K., & Rubin, D. C. (1999). Music, emotion, and autobiographical memory: They’re playing your song. Memory & Cognition, 27, 948–955. doi:10.3758/BF03201225

    Google Scholar 

  • Schutz, M., & Kubovy, M. (2009). Causality and cross-modal integration. Journal of Experimental Psychology: Human Perception and Performance, 35, 1791–1810. doi:10.1037/a0016455

    PubMed  Google Scholar 

  • Shepard, R. (1999). Pitch perception and measurement. In P. R. Cook (Ed.), Music, cognition, and computerized sound: An introduction to psychoacoustics (pp. 149–165). Cambridge, MA: MIT Press.

    Google Scholar 

  • Sollberger, B., Reber, R., & Eckstein, D. (2003). Musical chords as affective priming context in a word-evaluation task. Music Perception, 20, 263–282. doi:10.1525/mp.2003.20.3.263

    Google Scholar 

  • Steinbeis, N., & Koelsch, S. (2010). Affective priming effects of musical sounds on the processing of word meaning. Journal of Cognitive Neuroscience, 23, 604–621. doi:10.1162/jocn.2009.21383

    Google Scholar 

  • Surguladze, S. A., Young, A. W., Senior, C., Brebion, G., Travis, M. J., & Phillips, M. L. (2004). Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression. Neuropsychology, 18, 212–218. doi:10.1037/0894-4105.18.2.212

    PubMed  Google Scholar 

  • Thompson, W. F., Schellenberg, E. G., & Husain, G. (2004). Decoding speech prosody: Do music lessons help? Emotion, 4, 46–64. doi:10.1037/1528-3542.4.1.46

    PubMed  Google Scholar 

  • Trainor, L. (2008). Science & music: The neural roots of music. Nature, 453, 598–599. doi:10.1038/453598a

    PubMed  Google Scholar 

  • Tramo, M. J., Cariani, P. A., Delgutte, B., & Braida, L. D. (2001). Neurobiological foundations for the theory of harmony in Western tonal music. Annals of the New York Academy of Sciences, 930, 92–116. doi:10.1111/j.1749-6632.2001.tb05727.x

    PubMed  Google Scholar 

  • Van Dillen, L. F., & Derks, B. (2012). Working memory load reduces facilitated processing of threatening faces: An ERP study. Emotion, 12, 1340–1349. doi:10.1037/a0028624

    PubMed  Google Scholar 

  • Ventura, M. I., Baynes, K., Sigvardt, K. A., Unruh, A. M., Acklin, S. S., Kirsch, H. E., & Disbrow, E. A. (2012). Hemispheric asymmetries and prosodic emotion recognition deficits in Parkinson’s disease. Neuropsychologia, 50, 1936–1945. doi:10.1016/j.neuropsychologia.2012.04.018

    PubMed  Google Scholar 

  • Vroomen, J., Driver, J., & de Gelder, B. (2001). Is cross-modal integration of emotional expressions independent of attentional resources? Cognitive, Affective, & Behavioral Neuroscience, 1, 382–387. doi:10.3758/CABN.1.4.382

    Google Scholar 

  • Wager, T. D., Phan, K. L., Liberzon, I., & Taylor, S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: A meta-analysis of findings from neuroimaging. NeuroImage, 19, 513–531. doi:10.1016/S1053-8119(03)00078-8

    PubMed  Google Scholar 

  • Yalch, R., & Spangenberg, E. (1990). Effects of store music on shopping behaviour. Journal of Consumer Marketing, 7, 55–63. doi:10.1108/EUM0000000002502

    Google Scholar 

  • Yang, C. L., Perfetti, C. A., & Schmalhofer, F. (2007). Event-related potential indicators of text integration across sentence boundaries. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 55–89. doi:10.1037/0278-7393.33.1.55

    PubMed  Google Scholar 

  • Zhang, J., Zhou, R., & Oei, T. P. S. (2011). The effects of valence and arousal on hemispheric asymmetry of emotion: Evidence from event-related potentials. Journal of Psychophysiology, 25, 95–103. doi:10.1027/0269-8803/a000045

    Google Scholar 

Download references

Author note

The authors thank the participants in this study for their tireless efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances Heritage Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakker, D.R., Martin, F.H. Musical chords and emotion: Major and minor triads are processed for emotion. Cogn Affect Behav Neurosci 15, 15–31 (2015). https://doi.org/10.3758/s13415-014-0309-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13415-014-0309-4

Keywords

Navigation