Psychonomic Bulletin & Review

, Volume 9, Issue 4, pp 829–835

Comparing supervised and unsupervised category learning

Authors

    • Department of PsychologyUniversity of Texas
Brief Reports

DOI: 10.3758/BF03196342

Cite this article as:
Love, B.C. Psychonomic Bulletin & Review (2002) 9: 829. doi:10.3758/BF03196342
  • 925 Views

Abstract

Two unsupervised learning modes (incidental and intentional unsupervised learning) and their relation to supervised classification learning are examined. The approach allows for direct comparisons of unsupervised learning data with the Shepard, Hovland, and Jenkins (1961) seminal studies in supervised classification learning. Unlike supervised classification learning, unsupervised learning (especially under incidental conditions) favors linear category structures over compact nonlinear category structures. Unsupervised learning is shown to be multifaceted in that performance varies with task conditions. In comparison with incidental unsupervised learning, intentional unsupervised learning is more rule like, but is no more accurate. The acquisition and application of knowledge is also more laborious under intentional unsupervised learning.

Download to read the full article text

Copyright information

© Psychonomic Society, Inc. 2002