Collett, D. (1991).*Modeling binary data*. New York: Chapman & Hall/CRC.

Dobson, A. J. (1990).*Introduction to generalized linear models*. London: Chapman & Hall.

Draper, N. R., & Smith, H. (1981).*Applied regression analysis*. New York: Wiley.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife.

*Annals of Statistics*,

**7**, 1–26.

CrossRefEfron, B. (1982).*The jackknife, the bootstrap and other resampling plans* (CBMS-NSF Regional Conference Series in Applied Mathematics). Philadelphia: Society for Industrial and Applied Mathematics.

Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation.

*American Statistician*,

**37**, 36–48.

CrossRefEfron, B., & Tibshirani, R. J. (1993).*An introduction to the bootstrap*. New York: Chapman & Hall.

Finney, D. J. (1952).*Probit analysis* (2nd ed.). Cambridge: Cambridge University Press.

Finney, D. J. (1971).*Probit analysis* (3rd ed.). Cambridge: Cambridge University Press.

Forster, M. R. (1999). Model selection in science: The problem of language variance.

*British Journal for the Philosophy of Science*,

**50**, 83–102.

CrossRefGelman, A. B., Carlin, J. S., Stern, H. S., & Rubin, D. B. (1995).*Bayesian data analysis*. New York: Chapman & Hall/CRC.

Hämmerlin, G., & Hoffmann, K.-H. (1991).*Numerical mathematics* (L. T. Schumacher, Trans.). New York: Springer-Verlag.

Harvey, L. O., Jr. (1986). Efficient estimation of sensory thresholds.

*Behavior Research Methods, Instruments, & Computers*,

**18**, 623–632.

CrossRefHinkley, D. V. (1988). Bootstrap methods.*Journal of the Royal Statistical Society B*,**50**, 321–337.

Hoel, P. G. (1984).*Introduction to mathematical statistics*. New York: Wiley.

Lam, C. F., Mills, J. H., & Dubno, J. R. (1996). Placement of observations for the efficient estimation of a psychometric function.

*Journal of the Acoustical Society of America*,

**99**, 3689–3693.

PubMedCrossRefLeek, M. R., Hanna, T. E., & Marshall, L. (1992). Estimation of psychometric functions from adaptive tracking procedures.*Perception & Psychophysics*,**51**, 247–256.

McCullagh, P., & Nelder, J. A. (1989).*Generalized linear models*. London: Chapman & Hall.

McKee, S. P., Klein, S. A., & Teller, D. Y. (1985). Statistical properties of forced-choice psychometric functions: Implications of probit analysis.*Perception & Psychophysics*,**37**, 286–298.

Nachmias, J. (1981). On the psychometric function for contrast detection.

*Vision Research*,

**21**, 215–223.

PubMedCrossRefO’Regan, J. K., & Humbert, R. (1989). Estimating psychometric functions in forced-choice situations: Significant biases found in threshold and slope estimation when small samples are used.*Perception & Psychophysics*,**45**, 434–442.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992).*Numerical recipes in C: The art of scientific computing* (2nd ed.). New York: Cambridge University Press.

Quick, R. F. (1974). A vector magnitude model of contrast detection.

*Kybernetik*,

**16**, 65–67.

PubMedCrossRefSchmidt, F. L. (1996). Statistical significance testing and cumulative knowledge in psychology: Implications for training of researchers.

*Psychological Methods*,

**1**, 115–129.

CrossRefSwanson, W. H., & Birch, E. E. (1992). Extracting thresholds from noisy psychophysical data.*Perception & Psychophysics*,**51**, 409–422.

Treutwein, B. (1995). Adaptive psychophysical procedures.

*Vision Research*,

**35**, 2503–2522.

PubMedTreutwein, B., & Strasburger, H. (1999). Fitting the psychometric function.*Perception & Psychophysics*,**61**, 87–106.

Watson, A. B. (1979). Probability summation over time.

*Vision Research*,

**19**, 515–522.

PubMedCrossRefWeibull, W. (1951). Statistical distribution function of wide applicability.*Journal of Applied Mechanics*,**18**, 292–297.

Wichmann, F. A. (1999).*Some aspects of modelling human spatial vision: Contrast discrimination*. Unpublished doctoral dissertation, Oxford University.

Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: II. Bootstrap-based confidence intervals and sampling.

*Perception & Psychophysics*,

**63**, 1314–1329.

CrossRef