Skip to main content
Log in

A hierarchical approach for fitting curves to response time measurements

  • Notes and Comment
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

Understanding how response time (RT) changes with manipulations has been critical in distinguishing among theories in cognition. It is well known that aggregating data distorts functional relationships (e.g., Estes, 1956). Less well appreciated is a second pitfall: Minimizing squared errors (i.e., OLS regression) also distorts estimated functional forms with RT data. We discuss three properties of RT that should be modeled for accurate analysis and, on the basis of these three properties, provide a hierarchical Weibull regression model for regressing RT onto covariates. Hierarchical regression model analysis of lexical decision task data reveals that RT decreases as a power function of word frequency with the scale of RT decreasing 11% for every doubling of word frequency. A detailed discussion of the model and analysis techniques are presented as archived materials and may be downloaded from www.psychonomic.org/archive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathemati-cal functions with formulas, graphs, and mathematical tables. New York: Dover.

    Google Scholar 

  • Adelman, J. S., Brown, G. D. A., & Quesada, J. F. (2006). Contextual diversity, not word frequency, determines word-naming and lexical decision times. Psychological Science, 17, 814–823.

    Article  PubMed  Google Scholar 

  • Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369–406.

    Article  Google Scholar 

  • Andrews, S., & Heathcote, A. (2001). Distinguishing common and task-specific processes in word identification: A matter of some moment? Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, 514–544.

    Google Scholar 

  • Baayen, R. H., Tweedie, F. J., & Schreuder, R. (2002). The subjects as a simple random effect fallacy: Subject variability and morphological family effects in the mental lexicon. Brain & Language, 81, 55–65.

    Article  Google Scholar 

  • Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100, 432–459.

    Article  PubMed  Google Scholar 

  • Bush, R. R., & Mosteller, F. (1951). A mathematical model for simple learning. Psychological Review, 58, 313–323.

    Article  PubMed  Google Scholar 

  • Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning & Verbal Behavior, 12, 335–359.

    Article  Google Scholar 

  • Cleveland, W. S. (1981). Lowess: A program for smoothing scatterplots by robust locally weighted regression. American Statistician, 35, 54.

    Article  Google Scholar 

  • Dosher, B. A., & Lu, Z.-L. (2007). The functional form of performance improvements in perceptual learning: Learning rates and transfer. Psychological Science, 18, 531–539.

    Article  PubMed  Google Scholar 

  • Estes, W. K. (1956). The problem of inference from curves based on grouped data. Psychological Bulletin, 53, 134–140.

    Article  PubMed  Google Scholar 

  • Gelfand, A. E., & Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.

    Article  Google Scholar 

  • Gomez, P., Perea, M., & Ratcliff, R. (2007). Diffusion model of the go/no-go task. Journal of Experimental Psychology: General, 136, 389–413.

    Article  Google Scholar 

  • Haider, H., & Frensch, P. A. (2002). Why aggregated learning follows the power law of practice when individual learning does not: Comment on Rickard (1997, 1999), Delaney et al. (1998), and Palmeri (1999). Journal of Experimental Psychology: Learning, Memory, & Cognition, 28, 392–406.

    Google Scholar 

  • Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review, 7, 185–207.

    Article  Google Scholar 

  • Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford: Oxford University Press, Clarendon Press.

    Google Scholar 

  • Kučera, H., & Francis, W. N. (1967). Computational analysis of present Day American English. Providence, RI: Brown University Press.

    Google Scholar 

  • Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527.

    Article  Google Scholar 

  • Logan, G. D. (1992). Shapes of reaction-time distributions and shapes of learning curves: A test of the instance theory of automaticity. Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 883–914.

    Google Scholar 

  • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). London: Chapman & Hall.

    Book  Google Scholar 

  • McCusker, L. M. (1977). Some determinants of word recognition: Frequency. Paper presented at the 24th Annual Convention of the Southwestern Psychological Association, Fort Worth, TX.

  • Morton, J. (1969). The interaction of information in word recognition. Psychological Review, 76, 165–178.

    Article  Google Scholar 

  • Murray, W. S., & Forster, K. I. (2004). Serial mechanisms in lexical access: The rank hypothesis. Psychological Review, 111, 721–756.

    Article  PubMed  Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C: The art of scientific computing (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.

    Article  Google Scholar 

  • Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for decisions between two choices. Psychological Science, 9, 347–356.

    Article  Google Scholar 

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Rickard, T. C. (2004). Strategy execution in cognitive skill learning: An item-level test of candidate models. Journal of Experimental Psychology: Learning, Memory, & Cognition, 30, 65–82.

    Google Scholar 

  • Rouder, J. N. (2000). Assessing the roles of change discrimination and luminance integration: Evidence for a hybrid race model of perceptual decision making in luminance discrimination. Journal of Experimental Psychology: Human Perception & Performance, 26, 359–378.

    Google Scholar 

  • Rouder, J. N. (2005). Are unshifted distributional models appropriate for response time? Psychometrika, 70, 377–381.

    Article  Google Scholar 

  • Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin & Review, 12, 573–604.

    Article  Google Scholar 

  • Rouder, J. N., Lu, J., Speckman, P. L., Sun, D., & Jiang, Y. (2005). A hierarchical model for estimating response time distributions. Psychonomic Bulletin & Review, 12, 195–223.

    Article  Google Scholar 

  • Rouder, J. N., Sun, D., Speckman, P. L., Lu, J., & Zhou, D. (2003). A hierarchical Bayesian statistical framework for response time distributions. Psychometrika, 68, 587–604.

    Article  Google Scholar 

  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three dimensional objects. Science, 171, 701–703.

    Article  PubMed  Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. London: Sage.

    Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B, 64, 583–639.

    Article  Google Scholar 

  • van Breukelen, G. J. P. (2005). Psychometric modeling of response speed and accuracy with mixed and conditional regression. Psychometrika, 70, 359–391.

    Article  Google Scholar 

  • van den Noortgate, W., De Boeck, P., & Meulders, M. (2003). Cross-classification multilevel logistic models in psychometrics. Journal of Educational & Behavioral Statistics, 28, 369–386.

    Article  Google Scholar 

  • Wagenmakers, E.-J., & Brown, S. (2007). On the linear relation between the mean and the standard deviation of a response time distribution. Psychological Review, 114, 830–841.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey N. Rouder.

Additional information

This research is supported by Grants SES-0351523 and SES-0095919 from the National Science Foundation, R01-MH071418 from the National Institute of Mental Health, and Fellowship F-04-008 from the University of Leuven, Belgium.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouder, J.N., Tuerlinckx, F., Speckman, P. et al. A hierarchical approach for fitting curves to response time measurements. Psychonomic Bulletin & Review 15, 1201–1208 (2008). https://doi.org/10.3758/PBR.15.6.1201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/PBR.15.6.1201

Keywords

Navigation