Skip to main content

Advertisement

Log in

Herpes simplex virus type 1 persists in the aged brain through hypothetical expression of accessory genes

  • Mini Review
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Herpes simplex virus type 1 persists in the brain of most aged individuals and may contribute to the pathogenesis of Alzheimer’s disease. The virus likely utilizes accessory genes for neural spread within the nervous system and herpes simplex virus type 1 may regulate various host responses through an array of accessory genes. This mini-review focuses on these viral accessory genes that may shed light on the potential mechanisms of this enigmatic phenomenon in the elderly brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benetti L, Roizman B (2004). Herpes simplex virus protein kinase US3 activates and functionally overlaps protein kinase A to block apoptosis. Proc Natl Acad Sci U S A 101: 9411–9416.

    Article  CAS  PubMed  Google Scholar 

  • Cartier A, Broberg E, Komai T, Henriksson M, Masucci MG (2003). The herpes simplex virus-1 US3 protein kinase blocks CD8T cell lysis by preventing the cleavage of Bid by granzyme B. Cell Death Differ 10: 1320–1328.

    Article  CAS  PubMed  Google Scholar 

  • Cassady KA, Gross M (2002). The herpes simplex virus type 1 US11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain. J Virol 76: 2029–2035.

    Article  CAS  PubMed  Google Scholar 

  • Chee AV, Lopez P, Pandolfi PP, Roizman B (2003). Promyelocytic leukemia protein mediates interferon-based anti-herpes simplex virus 1 effects. J Virol 77: 7101–7105.

    Article  CAS  PubMed  Google Scholar 

  • Conrady CD, Drevets DA, Carr DJ (2010). Herpes simplex virus 1 (HSV-1) infection of the nervous system: Is an immune response a good thing? J Neuroimmunol 220: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Cribbs DH, Azizeh BY, Cotman CW, LaFerla FM (2000). Fibril formation and neurotoxicity by a herpes simplex virus glycoprotein B fragment with homology to the Alzheimer’s Ab peptide. Biochemistry 39: 5988–5994.

    Article  CAS  PubMed  Google Scholar 

  • Daubeuf S, Singh D, Tan Y, Liu H, Federoff HJ, Bowers WJ, Tolba K (2009). HSV ICP0 recruits USP7 to modulate TLR-mediated innate response. Blood 113: 3264–3275.

    Article  CAS  PubMed  Google Scholar 

  • Feldman LT, Ellison AR, Voytek CC, Yang L, Krause P, Margolis TP (2002). Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci U S A 99: 978–983.

    Article  CAS  PubMed  Google Scholar 

  • Hamza MA, Higgins DM, Feldman LT, Ruyechan WT (2007). The latency-associated transcript of herpes simplex virus type 1 promotes survival and stimulates axonal regeneration in sympathetic and trigeminal neurons. J NeuroVirol 13: 56–66.

    Article  CAS  PubMed  Google Scholar 

  • He B, Gross M, Roizman B (1997). The γ1 34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the a subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A 94: 843–848.

    Article  CAS  PubMed  Google Scholar 

  • Hickey WF (2001). Basic principles of immunological surveillance of the normal central nervous system. Glia 36: 118–124.

    Article  CAS  PubMed  Google Scholar 

  • Hüfner K, Derfuss T, Herberger S, Sunami K, Russell S, Sinicina I, Arbusow V, Strupp M, Brandt T, Theil D (2006). Latency of alpha-herpes viruses is accompanied by a chronic inflammation in human trigeminal ganglia but not in dorsal root ganglia. J Neuropathol Exp Neurol 65: 1022–1030.

    Article  PubMed  Google Scholar 

  • Itzhaki RF, Lin WR, Shang D, Wilcock GK, Faragher B, Jamieson GA (1997). Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet 349: 241–244.

    Article  CAS  PubMed  Google Scholar 

  • Itzhaki RF, Wozniak MA (2008). Herpes simplex virus type 1 in Alzheimer’s disease: the enemy within. J Alzheimer’s Dis 13: 393–405.

    CAS  Google Scholar 

  • Itzhaki RF, Cosby SL, Wozniak MA (2008). Herpes simplex virus type 1 and Alzheimer’s disease: the autophagy connection. J NeuroVirol 14: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Jerome KR, Chen Z, Lang R, Torres MR, Hofmeister J, Smith S, Fox R, Froelich CJ, Corey L (2001). HSV and glycoprotein J Inhibit caspase activation and apoptosis induced by granzyme B or Fas. J Immunol 167: 3928–3935.

    CAS  PubMed  Google Scholar 

  • Klapper PE, Cleator GM, Longson M (1984). Mild forms of herpes simplex encephalitis. J Neurol Neurosurg Psychiatr 47: 1247–1250.

    Article  CAS  PubMed  Google Scholar 

  • Knickelbein JE, Khanna KM, Yee MB, Baty CJ, Kinchington PR, Hendricks RL (2008). Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 322: 268–271.

    Article  CAS  PubMed  Google Scholar 

  • Leib DA, Alexander DE, Cox D, Yin J, Ferguson TA (2009). Interaction of ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses. J Virol 83: 12164–12171.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Carpenter D, Hsiang C, Wechsler SL, Jones C (2010). Herpes simplex virus type 1 latency-associated transcript inhibits apoptosis and promotes neurite sprouting in neuroblastoma cells following serum starvation by maintaining protein kinase B (AKT) levels. J Gen Virol 91: 858–866.

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Noyce RS, Collins SE, Everett RD, Mossman KL (2004). The herpes simplex virus ICP0 RING finger domain inhibits IRF3- and IRF7-mediated activation of interferon-stimulated genes. J Virol 78: 1675–1684.

    Article  CAS  PubMed  Google Scholar 

  • Lubinski JM, Jiang M, Hook L, Chang Y, Sarver C, Mastellos D, Lambris JD, Cohen GH, Eisenberg RJ, Friedman HM (2002). Herpes simplex virus type 1 evades the effects of antibody and complement in vivo. J Virol 76: 9232–9241.

    Article  CAS  PubMed  Google Scholar 

  • McGraw HM, Awasthi S, Wojcechowskyj JA, Friedman HM (2009). Anterograde spread of herpes simplex virus type 1 requires glycoprotein E and glycoprotein I but not Us 9. J Virol 83: 8315–8326.

    Article  CAS  PubMed  Google Scholar 

  • McGraw HM, Friedman HM (2009). Herpes simplex virus type 1 glycoprotein E mediates retrograde spread from epithelial cells to neuritis. J Virol 83: 4791–4799.

    Article  CAS  PubMed  Google Scholar 

  • Mori I, Kimura Y, Naiki H, Matsubara R, Takeuchi T, Yokochi T, Nishiyama Y (2004). Reactivation of HSV-1 in the brain of patients with familial Alzheimer’s disease. J Med Virol 73: 605–611.

    Article  CAS  PubMed  Google Scholar 

  • Mori I, Nishiyama Y, Yokochi T, Kimura Y (2005). Olfactory transmission of neurotropic viruses. J NeuroVirol 11: 129–137.

    Article  PubMed  Google Scholar 

  • Mori I, Nishiyama Y (2006). Accessory genes define the relationship between the herpes simplex virus and its host. Microb Infect 8: 2556–2562.

    Article  CAS  Google Scholar 

  • Mulvey M, Camarena V, Mohr I (2004). Full resistance of herpes simplex virus type 1-infected primary human cells to alpha interferon requires both the Us11 and g134.5 gene products. J Virol 78: 10193–10196.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y (2004). Herpes simplex virus gene products: the accessories reflect her lifestyle well. Rev Med Virol 14: 33–46.

    Article  CAS  PubMed  Google Scholar 

  • Orvedahl A, Alexander D, Tallóczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B (2007). HSV-1 ICP 34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 15: 23–35.

    Article  Google Scholar 

  • Peng W, Henderson G, Inman M, BenMohamed L, Perng G-C, Wechsler SL, Jones C (2005). The locus encompassing the latency-associated transcript of herpes simplex virus type 1 intereferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal ganglia of acutely infected mice. J Virol 79: 6162–6171.

    Article  CAS  PubMed  Google Scholar 

  • Peri P, Mattila RK, Kantola H, Broberg E, Karttunen HS, Waris M, Vuorinen T, Hukkanen V (2008). Herpes simplex virus type 1 Us3 gene deletion influences toll-like receptor responses in cultured monocytic cells. Virol J 5: 140–150.

    Article  PubMed  Google Scholar 

  • Shen W, Sae Silva M, Jaber T, Vitvitskaia O, Li S, Henderson G, Jones C (2009). Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis. J Virol 83: 9131–9139.

    Article  CAS  PubMed  Google Scholar 

  • Sloan DD, Zahariadis G, Posavad CM, Pate NT, Kussick SJ, Jerome KR (2003). CTL are inactivated by herpes simplex virus-infected cells expressing a viral protein kinase. J Immunol 171: 6733–6741.

    CAS  PubMed  Google Scholar 

  • Smith C, Lachmann RH, Efstathiou S (2000). Expression from the herpes simplex virus type 1 latency-associated promoter in the murine central nervous system. J Gen Virol 81: 649–662.

    CAS  PubMed  Google Scholar 

  • Steiner I, Mador N, Reibstein I, Spivack JG, Fraser NW (1994). Herpes simplex virus type 1 gene expression and reactivation of latent infection in the central nervous system. Neuropathol Appl Neurobiol 20: 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Taddeo B, Zhang W, Roizman B (2006). The UL41 protein of herpes simplex virus 1 degrades RNA by endonucleolytic cleavage in absence of other cellular and viral proteins. Proc Natl Acad Sci U S A 103: 2827–2832.

    Article  CAS  PubMed  Google Scholar 

  • Tallóczy Z, Virgin IV HW, Levine B (2006). PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2: 24–29.

    PubMed  Google Scholar 

  • Theil D, Horn AK, Derfuss T, Strupp M, Arbusow V, Brandt T (2004). Prevalence and distribution of HSV-1, VZV, and HHV-6 in human cranial nerve nuclei III, IV, VI, VII, and XII. J Med Virol 74: 102–106.

    Article  PubMed  Google Scholar 

  • Tomazin R, Hill AB, Jugovic P, York I, van Endert P, Ploegh HL, Andrews DW, Johnson DC (1996). Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J 15: 3256–3266.

    CAS  PubMed  Google Scholar 

  • Trgovcich J, Johnson D, Roizman B (2002). Cell surface major histocompatibility complex class II proteins are regulated by the products of the γ134.5 and UL41 genes of herpes simplex virus 1. J Virol 76: 6974–6986.

    Article  CAS  PubMed  Google Scholar 

  • Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR (2009). Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 83: 10677–10683.

    Article  CAS  PubMed  Google Scholar 

  • Valyi-Nagy T, Olson SJ, Valyi-Nagy K, Montine TJ, Dermody TS (2000). Herpes simplex virus type 1 latency in the murine nervous system is associated with oxidative damage to neurons. Virology 278: 309–321.

    Article  CAS  PubMed  Google Scholar 

  • Wasling P, Daborg J, Riebe I, Andersson M, Portelius E, Blennow K, Hanse E, Zetterberg H (2009). Synaptic retrogenesis and amyloid-beta in Alzheimer’s disease. J Alzheimer’s Dis 16: 1–14.

    CAS  Google Scholar 

  • Wojtowicz WM, Farzan M, Joyal JL, Carter K, Babcock GJ, Israel DI, Sodroski J, Mirzabekov T (2002). Stimulation of enveloped virus infection by b-amyloid fibrils. J Biol Chem 38: 35019–35024.

    Article  Google Scholar 

  • Wozniak MA, Shipley SJ, Combrinck M, Wilcock GK, Itzhaki RF (2005). Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer’s disease patients. J Med Virol 75: 300–306.

    Article  PubMed  Google Scholar 

  • Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB (2007). Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci Lett, 429: 95–100.

    Article  CAS  PubMed  Google Scholar 

  • Wozniak MA, Mee AP, Itzhaki RF (2009a). Herpes simplex virus type 1 DNA is located within Alzhermer’s disease amyloid plaques. J Pathol 217: 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Wozniak MA, Frost AL, Itzhaki RF (2009b). Alzheimer’s disease-specific tau phosphorylation is induced by herpes simplex virus type 1. J Alzheimer’s Dis 16: 341–350.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isamu Mori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, I. Herpes simplex virus type 1 persists in the aged brain through hypothetical expression of accessory genes. Journal of NeuroVirology 16, 203–207 (2010). https://doi.org/10.3109/13550281003739040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3109/13550281003739040

Keywords

Navigation