Skip to main content
Log in

Atomic structure of extended defects in boron-implanted silicon layers

  • Fundamental Problems of Epitaxy of Semiconductor Nanoheterostructures
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The structure of extended defects introduced into Si by means of boron implantation followed by thermal annealing at T = 900 °C is studied by the method of high-resolution transmission electron microscopy and computer modeling for different values of the implantation dosage (D) and concentration of boron atoms in substitutional positions B0 \((C_{B_0 } )\) injected into the Si lattice before implantation. It is shown that the Frank dislocation loops of both interstitial (I) and vacancy (V) type at a ratio of 4: 1 are observed in Si samples with D = 1016 cm−2 up to \(C_{B_0 } \) = 0.8·1020 cm−3. The atomic structure of the I-type Frank dislocation loops is heavily deformed, which suggests segregation of finely dispersed boron in the defect plane. At the same time, the structure of the V-type Frank dislocation loops tends to be reconstructed due to interaction with self-interstitials. At \(C_{B_0 } \) = 2.5·1020 cm−3, the I-type Frank dislocation loops are found to transform to perfect dislocation loops, and boron precipitates with a high density appear in Si. Based on the results obtained, probable reasons for vacancy deficit formation in boron-implanted Si are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. D. Giles, “Transient Phosphorus Diffusion below the Amorphization Threshold,” J. Electrochem. Soc. 138(4), 1160–1168 (1991).

    Article  Google Scholar 

  2. D. J. Eaglesham, P. A. Stolk, H.-J. Gossmann, and J. M. Poate, “Implantation and Transient B Diffusion in Si: The Source of the Interstitials,” Appl. Phys. Lett. 65(18), 2305–2307 (1994).

    Article  ADS  Google Scholar 

  3. A. Aseev, L. Fedina, D. Hoehl, and H. Barsch, Clusters of Interstitial Atoms in Silicon and Germanium (Academy Verlag, Berlin, 1994).

    Google Scholar 

  4. S. Libertino and A. La Magna, “Damage Formation and Evolution in Ion-Implanted Crystalline Si,” in: Materials Science with Ion Beams (edited by H. Bernas), Ser. Topics in Applied Physics, Vol. 116, pp. 147–212 (2010).

    Chapter  Google Scholar 

  5. R. Kalyanaraman, V. Venezia, L. Pelaz, et al., “Enhanced Low Temperature Electrical Activation of B in Si,” Appl. Phys. Lett. 82(2), 215–217 (2003).

    Article  ADS  Google Scholar 

  6. K. V. Feklistov, L. I. Fedina, and A. G. Cherkov, “Boron Precipitation in Si during High-Dosage Implantation,” Fiz. Tekhn. Polupr. 44(3), 302–305 (2010).

    Google Scholar 

  7. A. L. Aseev, M. Tsigler, and L. I. Fedina, “On the Structure of Oxidation Stacking Faults,” Poverkhnost. Fisika, Khimiya, Mekhanika, No. 10, 70–79 (1986).

    Google Scholar 

  8. L. Fedina, A. Gutakovskii, A. Aseev, et al., “Extended Defects Formation in Si Crystals by Clustering of Intrinsic Point Defects Studied by In-Situ Electron Irradiation in an HREM,” Phys. Status Solidi A 171(1), 147–157 (1999).

    Article  ADS  Google Scholar 

  9. S. Duguay, T. Philippe, F. Cristiano, and D. Blavette, “Direct Imaging of Boron Segregation to Extended Defects in Silicon,” Appl. Phys. Lett. 97(3), 242104–242107 (2010).

    Article  ADS  Google Scholar 

  10. L. Fedina, A. Gutakovskii, A. Aseev, et al., “On the Mechanism of {111} Defect Formation in Silicon Studied by In Situ Electron Irradiation in a High Resolution Electron Microscope,” Phil. Mag. A 77(2), 423–435 (1998).

    Article  ADS  Google Scholar 

  11. L. Fedina and A. Aseev, “Study of Point Defects Interaction with Dislocation in Silicon by Means of Irradiation in an Electron Microscope,” Phys. Status Solidi A 95(2), 517–529 (1986).

    Article  ADS  Google Scholar 

  12. L. I. Fedina, S. A. Song, A. L. Chuvilin, et al., “On the Mechanism of {113}-Defect Formation in Si,” Springer Proc. Phys. 107, 359–362 (2005).

    Article  Google Scholar 

  13. C. T. Chou, D. J. H. Cockayne, J. Zou, et al., “{111} Defects in 1-MeV-Silicon-Ion-Implanted Silicon,” Phys. Rev. B 52(24), 17223–17230 (1995).

    Article  ADS  Google Scholar 

  14. M. Beaufort, H. Garem, and J. Lépinoux, “Microstructural Defects Induced by Implantation of Hydrogen in (111) Silicon,” Phil. Mag. A 69(5), 881–901 (1994).

    Article  ADS  Google Scholar 

  15. D. De Salvador, E. Napolitani, S. Mirabella, et al., “Atomistic Mechanism of Boron Diffusion in Silicon,” Phys. Rev. Lett. 97(25), 255902 (2006).

    Article  ADS  Google Scholar 

  16. K. Feklistov and L. I. Fedina, “Boron Nonuniform Precipitation in Si at the Ostwald Ripening Stage,” Physica B 404(23–24), 4641–4644 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Fedina.

Additional information

Original Russian Text © L.I. Fedina, A.K. Gutakovskii, A.V. Latyshev, 2014, published in Avtometriya, 2014, Vol. 50, No. 3, pp. 34–40.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedina, L.I., Gutakovskii, A.K. & Latyshev, A.V. Atomic structure of extended defects in boron-implanted silicon layers. Optoelectron.Instrument.Proc. 50, 241–246 (2014). https://doi.org/10.3103/S8756699014030042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699014030042

Keywords

Navigation