Skip to main content
Log in

Effect of growth regulators and explant on plant regeneration of Solanum lycopersicum L. var. cerasiforme

Russian Agricultural Sciences Aims and scope

Abstract

Tomato serves as a model to introduce agronomically important genes into dicotyledonous crop plants and to develop edible vaccines and produce cost-effective therapeutics. This study has developed an efficient protocol of shoot organogenesis for Lycopersicon esculentum Mill. through using of different types of explants and growth regulators. Generally, all explants responded significantly to presence of BAP. Best shoot regeneration for leaf (100%) was achieved on MS supplemented with BAP (2 mg/L) + IAA (0.1 mg/L), whereas it was recorded on MS supplemented with BAP (2 mg/L) and BAP (2 mg/L) + IAA (0.5 mg/L) for cotyledons (95%). In addition, hypocotyls (77%) showed the best shoot response on MS supplemented BAP (3 mg/L). Highest number of shoots per explant was 13.33, 12.25, 7.94 respectively for hypocotyls, leaves, cotyledons. The best medium for highest length of shoot was in the presence of BAP (3 and 2 mg/L) + IAA (0.1 mg/L) respectively for hypocotyl (45 mm) and leaf (40.50 mm) explants. This parameter was achieved for cotyledons (13.32 and 12.5 mm) on MS medium supplemented with BAP (3 and 2) mg/L + IAA (0.1 mg/L), respectively. The increasing of BAP concentration up to 3 (mg/L) causes shoot length to continue developing, but it fell down in the presence of BAP (4 mg/L) due to the toxic effect of growth regulators accumulation. Root formation took place within 10–14 days after culturing on the rooting media. Best root induction (100%) was observed on MS medium supplemented with IAA (0.1 and 0.2 mg/L). All rooted shoots acclimated in phytotron and then cultivated in the greenhouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BAP:

6-benzylaminopurine

IAA:

indole acetic acid

IBA:

indole-3-butyric acid

MS:

Murashige and Skoog medium

References

  1. Afroz, A., Chaudhry, Z., Rashid, U., Khan, M.R., and Ali, G.M., Enhanced regeneration in explants of tomato (Lycopersicon esculentum L.) with the treatment of coconut water, Afr. J. Biotechnol., 2010, vol. 9(24), pp. 3634–3644.

    CAS  Google Scholar 

  2. Asakura, N., Misoo, S., Kamijima, O., and Sawano, M., High frequency regeneration of diploids from apical end of cultured hypocotyl tissue in tomato, Breed. Sci., 1995, vol. 45, pp. 455–459.

    Google Scholar 

  3. Bhatia, P. and Ashwath, N., Effect of duration of light: Dark cycles on in vitro shoot regeneration of tomato, Asian J. Plant Sci., 2005, vol. 4(3), pp. 255–260.

    Article  Google Scholar 

  4. Bhatia, P. and Ashwath, N., Effect of medium pH on shoot regeneration from the cotyledonary explants of tomato, Biotechnology, 2005, vol. 4(1), pp. 7–10.

    Article  Google Scholar 

  5. Bhatia, P., Ashwath, N., Senaratna, T., and David, M., Tissue culture studies of tomato (Lycopersicon esculentum), Plant Cell, Tissue Organ Cult., 2004, vol. 78, pp. 1–21.

    Article  Google Scholar 

  6. Bhatia, P., Ashwath, N., and David, M., Effects of genotype, explant orientation, and wounding on shoot regeneration in tomato, In Vitro Cell. Dev. Biol.: Plant., 2005, vol. 41, pp. 457–464.

    Article  Google Scholar 

  7. Carimi, F., Terzi, M., De Michele, R., Zottini, M., and Lo Schiavo, F., High levels of the cytokinin BAP induces PCD by accelerating senescence, Plant Sci., 2004, vol. 166(4), pp. 963–969.

    Article  CAS  Google Scholar 

  8. Carvalho, R.F., Campos, M.L., Pino, L.E., Crestana, S.L., Zsogon, A., Lima, J.E., Benedito, V.A., and Peres, L.E.P., Convergence of developmental mutants into a single tomato model system: “Micro-Tom” as an effective toolkit for plant development research, Plant Methods, 2011, vol. 7(18), pp. 1–14.

    Google Scholar 

  9. Chaudhary, Z., Afroz, A., and Rashid, H., Effect of variety and plant growth regulators on callus proliferation and regeneration response of three tomato cultivars (Lycopersicon esculentum), Pak. J. Bot., 2007, vol. 39(3), pp. 857–869.

    Google Scholar 

  10. Chaudhary, Z., Feroz, I., Ahmed, W., Rashid, H., Mirza, B., and Qureshi, A.S., Varietal response of Lycopersicon esculentum L. to callogenesis and regeneration, OnLine J. Biol. Sci., 2001, vol. 1, pp. 1138–1140.

    Article  Google Scholar 

  11. Chaudhary, Z., Habib, D., Rashid, H., and Qureshi, A.S., Regeneration from various explants of In-vitro seedlings of tomato (Lycopersicon esculentum c.v. Roma), Pak. J. Biol. Sci., 2004, vol. 7(2), pp. 269–272.

    Article  Google Scholar 

  12. Chaudhary, Z., Abbas, S., Yasmin, A., Rashid, H., Ahmed, H., and Anjum, M.A., Tissue culture studies in tomato (Lycopersicon esculentum) Var. Moneymaker, Pak. J. Bot., 2010, vol. 42(1), pp. 155–163.

    Google Scholar 

  13. Chen, L.Z. and Adachi, T., Plant regeneration via somatic embryogenesis from cotyledon protoplasts of tomato (Lycopersicon esculentum Mill), Breed. Sci., 1994, vol. 44, pp. 337–338.

    Google Scholar 

  14. Daniell, H., Khan, M.S., and Allison, L., Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology, Trends Plant Sci., 2002, vol. 7, pp. 84–91.

    Article  PubMed  CAS  Google Scholar 

  15. Davis, D.G., Breiland, K.A., Frear, D.S., and Secor, G.A., Callus initiation and regeneration of tomato (Lycopersicon esculentum) cultivars with different sensitivities to metribuzin, Plant Growth Regul., 1994, vol. 22, pp. 65–73.

    CAS  Google Scholar 

  16. Devi, M., Dhaliwal, M.S., Kaur, A., and Gosal, S.S., Effect of growth regulators on in vitro morphogenetic response of tomato, Indian J. Biotechnol., 2008, vol. 7, pp. 526–530.

    CAS  Google Scholar 

  17. Di Matteo, A., Rigano, M.M., Sacco, A., Frusciante, L., and Barone, A., Genetic transformation in tomato: novel tools to improve fruit quality and pharmaceutical production, Genetic Transformation, Alvarez, M., Ed., Croatia: InTech, 2011, p. 55. http://www.intechopen.com/source/pdfs/18813/InTech-Genetic-transformation-in-tomato-novel-tools-to-improve-fruit-quality-and-pharmaceutical-production.pdf. ISBN 978-953-307-364-4

    Google Scholar 

  18. Duzyaman, E., Tanrisever, A., and Gunver, G., Comparative studies on regeneration of different tissues of tomato in vitro, Acta Hortic., 1994, vol. 366, pp. 235–242.

    Google Scholar 

  19. El-Farash, E.M., Abdalla, H.I., Taghian, A.S., and Ahmad, M.H., Genotype, explant age and explant type as affecting callus and shoot regeneration in tomato, Assiut J. Agric. Sci., 1993, vol. 24, pp. 3–14.

    Google Scholar 

  20. FAOSTAT, Crop Statistics, FAO, 2011. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Cited December 11, 2011.

    Google Scholar 

  21. FAO: Tomato, Land and Water, FAO, 2002. www.fao.org/landandwater/aglw/cropwater/tomato.htm. Cited December 2, 2011.

  22. Fari, M., Szasz, A., Mityko, J., Nagy, I., Csanyi, M., and Andrasfalvy, A., Induced organogenesis via the seedling decapitation method (SDM) in three solanaceous vegetable species, Capsicum Newsl., 1992, pp. 243–248.

    Google Scholar 

  23. Franklin, C.I. and Dixon, R.A., Initiation and maintenance of callus and cell suspension cultures, Plant Cell Culture — a Practical Approach, Dixon, R.A. and Gonzales, R.A., Eds., New York: Oxford Univ. Press, 1994, 2nd ed., pp. 1–29.

    Google Scholar 

  24. Gill, R., Malik, K.A., Sanago, M.H.M., and Saxena, P.K., Somatic embryogenesis and plant regeneration from seedling cultures of tomato (Lycopersicon esculentum Mill.), J. Plant Physiol., 1995, vol. 147, pp. 273–276.

    Article  CAS  Google Scholar 

  25. Granny, Health Benefits of tomatoes, Alternative Therapies, 2011. http://www.drgranny.com/food-nutrition/health-benefits-of-tomatoes/

  26. Gubis, J., Lajchova, Z., Farago, J., and Jurekova, Z., Effect of genotype and explant type on shoot regeneration in tomato (Lycopersicon esculentum Mill.), Czech J. Genet. Plant Breed., 2003, vol. 39, pp. 9–14.

    Google Scholar 

  27. Gubis, J., Lajchova, Z., Farago, J., and Jurekova, Z., Effect of growth regulators on shoot induction and plant regeneration in tomato (Lycopersicon esculentum Mill.), Biologia (Bratislava), 2004, vol. 59(3), pp. 405–408.

    CAS  Google Scholar 

  28. Gunay, A.L. and Rao, P.S., In vitro propagation of hybrid tomato plants (Lycopersicon esculentum L.) using hypocotyl and cotyledon explants, Ann. Bot., 1980, vol. 45, pp. 205–207.

    Google Scholar 

  29. Hamza, S.Y. and Chupeau, Re-evolution of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum), J. Exp. Bot., 1993, vol. 44, pp. 1837–1845.

    Article  CAS  Google Scholar 

  30. Ichimura, K. and Oda, M., Stimulation of phenotypically normal shoot regeneration of tomato (Lycopersicon esculentum Mill.) by commercial filter paper extracts, J. Jpn. Soc. Hortic. Sci., 1998, vol. 67, pp. 378–380.

    Article  Google Scholar 

  31. Ichimura, K. and Oda, M., Stimulation of shoot regeneration from cotyledon segments of tomato (Lycopersicon esculentum Mill.) by agar and its extract, J. Jpn. Soc. Hortic. Sci., 1995, vol. 64, pp. 135–141.

    Article  CAS  Google Scholar 

  32. Ishag, S., Osman, M.G., and Khalafalla, M.M., Effects of growth regulators, explant and genotype on shoot regeneration in tomato (Lycopersicon esculentum c.v. Omdurman), Int. J. Sustainable Crop Prod., 2009, vol. 4(6), pp. 7–13.

    Google Scholar 

  33. Izadpanah, M. and Khosh-Khui, M., Comparisons of in vitro propagation of tomato cultivars, Iran Agric. Res., 1992, vol. 8, pp. 37–47.

    Google Scholar 

  34. Jabeen, N., Chaudhry, Z., Rashid, H., and Mirza, B., Effect of genotype and explant type on in vitro shoot regeneration of tomato (Lycopersicon esculentum), Pak. J. Bot., 2005, vol. 37(4), pp. 899–903.

    Google Scholar 

  35. Jatoi, S.A., Sajid, G.M., Quraishi, A., and Munir, M., Callogenetic and morphogenetic response of leaf explants of in vitro grown F1 tomato hybrids to different levels of plant growth regulators, Pak. J. Plant Sci., 2001, vol. 1(2), pp. 281–287.

    Google Scholar 

  36. Kaparakis, G. and Alderson, P.G., Influence of high concentrations of cytokinins on the production of somatic embryos by germinating seeds of tomato, aubergine and pepper, J. Hortic. Sci. Biotechnol., 2002, vol. 77, pp. 186–190.

    CAS  Google Scholar 

  37. Khan, M.S., Usman, M., and Lilla, M.I., Facile plant regeneration from tomato leaves induced with spectinomycin, Pak. J. Bot., 2006, vol. 38(4), pp. 947–952.

    Google Scholar 

  38. Ling, H.Q., Kriseleit, D., and Ganal, M.W., Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.), Plant Cell Rep., 1998, vol. 17(11), pp. 843–847.

    Article  CAS  Google Scholar 

  39. Mensuali-Sodi, A., Panizza, M., and Tognoni, F., Endogenous ethylene requirement for adventitious root induction and growth in tomato cotyledons and lavandin microcuttings in vitro, Plant Growth Regul., 1995, vol. 17, pp. 205–212.

    Article  CAS  Google Scholar 

  40. Moghaleb, R.E.A., Saneoka, H., and Fujita, K., Plant regeneration from hypocotyls and cotyledon explants of tomato (Lycopersicon esculentum), Soil Sci. Plant Nutr., 1999, vol. 45, pp. 639–646.

    Article  Google Scholar 

  41. Mohamed, A.N., Ismail, M.R., Kadir, M.A., and Saud, H.M., In vitro performances of hypocotyl and cotyledon explants of tomato cultivars under sodium chloride stress, Afr. J. Biotechnol., 2011, vol. 10(44), pp. 8757–8764.

    CAS  Google Scholar 

  42. Muhlbach, H.P., Different regeneration potentials of mesophyll protoplasts from cultivated and a wild species of tomato, Planta, 1980, vol. 148, pp. 89–96.

    Article  Google Scholar 

  43. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant, 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  44. Novak, F.J. and Maskova, I., Apical shoot tip culture of tomato, Sci. Hortic., 1979, vol. 10, pp. 337–344.

    Article  CAS  Google Scholar 

  45. Oktem, H.A., Bulbul, Y., Oktem, E., and Yucel, Regeneration and Agrobactrerium-mediated transformation studies in tomato (Lycopersicon esculentum Mill.), Turk. J. Bot., 1999, vol. 23, pp. 345–348.

    Google Scholar 

  46. Osman, M.G., Elhadi, E.A., and Khalafalla, M.M., Callus formation and organogenesis of tomato (Lycopersicon esculentum Mill, C.V. Omdurman) induced by thidiazuron, Afr. J. Biotechnol., 2010, vol. 9(28), pp. 4407–4413.

    CAS  Google Scholar 

  47. Padliskikh, V.L. and Yarmishin, A.P., Features of microclonal propagation in tomato, Vestsi Akademii Navuk BSS, Reryya Biyalagichnykh Navuk, 1990, vol. 6, pp. 52–54.

    Google Scholar 

  48. Rao, K.V., Kiranmayee, K., Pavan, U., Jaya Sree, T., Rao, A.V., and Sadanandam, A., Induction of multiple shoots from leaf segments, in vitro-flowering and fruiting of a dwarf tomato (Lycopersicon esculentum), J. Plant Physiol., 2005, vol. 162, pp. 959–962.

    Article  PubMed  CAS  Google Scholar 

  49. Schnapp, S.R. and Preece, J.E., In vitro growth reduction of tomato and carnation microplants, Plant Cell, Tissue Organ Cult., 1986, vol. 6, pp. 3–8.

    Article  CAS  Google Scholar 

  50. Schutze, R. and Wieczorrek, G., Investigations into tomato tissue cultures. I. Shoot regeneration in primary explants of tomato, Arch. Zuchtungsforsch., 1987, vol. 17, pp. 3–15.

    Google Scholar 

  51. Selvi, D.T. and Khader, M.A., In vitro morphogenetic capacity of tomato (Lycopersicon esculentum Mill.) var. PKM 1, South Indian Hortic., 1993, vol. 41, pp. 251–258.

    Google Scholar 

  52. Sheeja, T.E., Mondal, A.B., and Rathore, R.K.S., Efficient plantlet regeneration in tomato (Lycopersicon esculentum), Plant Tissue Cult., 2004, vol. 14(1), pp. 45–53.

    Google Scholar 

  53. Sink, K.C., Handley, L.W., Niedz, R.P., and Moore, P.P., Protoplast culture and use of regeneration attributes to select tomato plants, in Proc. Int. Symp. EUCARPIA “Genetic Manipulation in Plant Breeding”, September 8–13, 1985, Berlin, Germany, 1986, pp. 405–413.

    Google Scholar 

  54. Sarker, R.H., Islam, K., and Hoque, M.I., In vitro regeneration and Agrobacterium-mediated genetic transformation of tomato (Lycopersicon esculentum Mill.), Plant Tissue Cult., Dev., Biotechnol., 2009, vol. 19(1), pp. 101–111.

    Google Scholar 

  55. Steinitz, B., Amitay, A., Gaba, V., Tabib, Y., Keller, M., and Levin, I., A simple plant regeneration-ability assay in a range of Lycopersicon species, Plant Cell, Tissue Organ Cult., 2006, vol. 84(3), pp. 269–278.

    Article  Google Scholar 

  56. Sukumar, S. and Shree Rangasamy, S.R., Response of in vitro leaf callus cultures for regeneration and evaluation of the regenerates in tomato, Curr. Sci., 1988, vol. 57, pp. 890–892.

    Google Scholar 

  57. Tomato, Seeds of Trade, The Natural History Museum, 2011. http://www.nhm.ac.uk/nature-online/life/plantsfungi/seeds-of-trade/page.dsml?section=regions&cat-ref=&region-ID=1&ref=tomato. Accessed December 11, 2011.

  58. Thomson, J.A., Genetic engineering of crop plants, in Biotechnology, Vol. III: Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Oxford, UK: Eolss Publ., 2011. http://www.eolss.net/Sample-Chapters/C17/E6-5803-04.pdf

    Google Scholar 

  59. Van Roekel, J.S.C., Damm, B., Melchers, L.S., and Hoekema, A., Factors influencing transformation frequency of tomato, Plant Cell Rep., 1993, vol. 12, pp. 644–647.

    Article  Google Scholar 

  60. Vikram, G., Madhusudhan, K., Srikanth, K., Laxminarasu, M., and Swamy, N.R., Effect of plant growth regulators on in vitro organogenesis in cultivated tomato (Solanum lycopersicum L.), J. Res. Biol., 2011, vol. 1(4), pp. 263–268.

    Google Scholar 

  61. Tomato, Wikipedia. http://en.wikipedia.org/wiki/tomato. Accessed December 11, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Otroshy.

Additional information

The article is published in the original.

About this article

Cite this article

Otroshy, M., Khalili, Z., Ebrahimi, M.A. et al. Effect of growth regulators and explant on plant regeneration of Solanum lycopersicum L. var. cerasiforme . Russ. Agricult. Sci. 39, 226–235 (2013). https://doi.org/10.3103/S1068367413030178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367413030178

Keywords

Navigation