Skip to main content
Log in

Study of electromagnetic field surface states in photonic crystals using the finite-difference method

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The properties of electromagnetic field surface states in globular photonic crystals are analyzed using numerical solution of Maxwell equations by the finite-difference method. The spatial distributions of the optical radiation intensity near the photonic crystal surface are obtained. A significant redistribution of the field strength in the crystal bulk, accompanied by the appearance of high-intensity local peaks, is shown. It was found that the maximum local intensity of radiation is observed when the exciting radiation wavelength coincides with the crystal band gap position. In this case, the average electromagnetic wave intensity rapidly decreases from the surface to the photonic crystal depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Bykov, Zh. Eksp. Teor. Fiz. 35, 269 (1972).

    Google Scholar 

  2. V. S. Gorelik, Kvant. Elektron. 37, 409 (2007).

    Article  ADS  Google Scholar 

  3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).

    Article  ADS  Google Scholar 

  4. E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 67, 2295 (1991).

    Article  ADS  Google Scholar 

  5. R. M. Hornreich and S. Shtrikman, Phys. Rev. B 49, 10914 (1994).

    Article  ADS  Google Scholar 

  6. J. Sajeev, Phys. Rev. Lett. 58, 2486 (1987).

    Article  Google Scholar 

  7. M. Soljacic and J. D. Joannopoulos, Nature Mater. 3, 211 (2004).

    Article  ADS  Google Scholar 

  8. S. Fan, S. G. Johnson, J. D. Joannopoulos, et al., J. Opt. Soc. Am. B 18, 162 (2001).

    Article  ADS  Google Scholar 

  9. E. Chow, S. Y. Lin, J. R. Wendt, et al., Opt. Lett. 26, 286 (2001).

    Article  ADS  Google Scholar 

  10. J. C. Knight, T. A. Birks, P. St. J. Russell, and D.M. Atkin, Opt. Lett. 21, 1547 (1996).

    Article  ADS  Google Scholar 

  11. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).

    Article  Google Scholar 

  12. F. Benabid, F. Couny, J. C. Knight, et al., Nature 434, 488 (2005).

    Article  ADS  Google Scholar 

  13. V. Berger, Phys. Rev. Lett. 81, 4136 (1998).

    Article  ADS  Google Scholar 

  14. A. V. Balakin, V. A. Bushuev, N. I. Koroteev, et al., Opt. Lett. 24, 793 (1999).

    Article  ADS  Google Scholar 

  15. A. A. Fedyanina, O. A. Aktsipetrov, D. A. Kurdyukov, et al., Appl. Phys. Lett. 87, 151111 (2005).

    Article  ADS  Google Scholar 

  16. A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, et al., Phys. Rev. E 63, 466091 (2001).

    Article  Google Scholar 

  17. A. V. Andreev, A. V. Balakin, A. B. Kozlov, et al., J.Opt. Soc.Am. B:Opt. Phys. 19, 1865 (2002).

    Article  ADS  Google Scholar 

  18. A. V. Andreev, A. V. Balakin, A. B. Kozlov, et al., J.Opt. Soc.Am. B:Opt. Phys. 19, 2083 (2002).

    Article  ADS  Google Scholar 

  19. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  20. N.A.R. Bhat and J. E. Sipe, Phys. Rev. E 64, 056604 (2001).

    Article  ADS  Google Scholar 

  21. K. Rivoire, S. Buckley, Y. Song, et al., Phys. Rev. B 85, 045319 (2012).

    Article  ADS  Google Scholar 

  22. D. N. Sob’yanin, Phys. Rev. E 88, 022132 (2013).

    Article  ADS  Google Scholar 

  23. J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Nature 468, 545 (2010).

    Article  ADS  Google Scholar 

  24. N. F. Bunkin, V. S. Gorelik, and V. V. Filatov, Phys. Wave Phenom. 18, 90 (2010).

    Article  ADS  Google Scholar 

  25. E. L. Ivchenko and A. N. Poddubny, Phys. Solid State 55, 905 (2013).

    Article  ADS  Google Scholar 

  26. V. V. Filatov and V. S. Gorelik, Kratkie Soobshcheniya po Fizike 37(2), 42 (2010) [Bulletin of the Lebedev Physics Institute 37, 56 (2010)].

    Google Scholar 

  27. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyanskii, Usp. Fiz. Nauk 53, 243 (2010).

    Article  Google Scholar 

  28. J. Klos, Phys. Rev. B 76, 165125 (2007).

    Article  ADS  Google Scholar 

  29. N. Malkova and C. Z. Ning, Phys. Rev. B 73, 113113 (2006).

    Article  ADS  Google Scholar 

  30. N. Malkova and C. Z. Ning, Phys. Rev. B 76, 045305 (2007).

    Article  ADS  Google Scholar 

  31. K. Yee, IEEE Trans Antennas Propag 14, 302 (1966).

    Article  ADS  MATH  Google Scholar 

  32. Allen Taflove and Susan C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, London, 2005).

    Google Scholar 

  33. Y. Hao and R. Mittra, FDTD Modeling of Metamaterials: Theory and Applications (Artech House, Boston, 2009).

    Google Scholar 

  34. J. B. Schneider, Understanding the Finite-Difference Time-Domain Method, http://www.eecs.wsu.edu/~schneidj/ufdtd/.

  35. K. I. Zaitsev, V. E. Karasik, I. N. Fokina, and S. A. Koroleva, “Study of the Applicability of Terahertz Imaging Systems to Medical Diagnostics, ” Vestnik MGTU. Ser.: Priborostroenie, No. 4, 114 (2012).

    Google Scholar 

  36. K. I. Zaytsev, G. M. Katyba, E. V. Yakovlev, et al., J. Appl. Phys. 115, 213505 (2014).

    Article  ADS  Google Scholar 

  37. K. I. Zaytsev, V. E. Karasik, I. N. Fokina, and V. I. Alekhnovich, Opt. Eng. 52, 068203 (2013).

    Article  ADS  Google Scholar 

  38. I. N. Fokina, K. I. Zaytsev, V. E. Karasik, and K. P. Tsapenko, Proc. SPIE 8846, 88460A (2013).

    Article  ADS  Google Scholar 

  39. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gorelik.

Additional information

Original Russian Text © K.I. Zaitsev, V.S. Gorelik, G.M. Katyba, S.O. Yurchenko, 2015, published in Kratkie Soobshcheniya po Fizike, 2015, Vol. 42, No. 2, pp. 28–39.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, K.I., Gorelik, V.S., Katyba, G.M. et al. Study of electromagnetic field surface states in photonic crystals using the finite-difference method. Bull. Lebedev Phys. Inst. 42, 48–54 (2015). https://doi.org/10.3103/S1068335615020049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335615020049

Keywords

Navigation