Skip to main content
Log in

Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 2. Sizes and stability. Dynamic light scattering study

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Size distributions of tungsten oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasound were studied by the dynamic light scattering method. Particles produced by this method under ultrasonic cavitation (USC), in the absence of cavitation, and without cavitation followed by ultrasonic processing are compared. The behavior of concentrations of particles of various size groups is comparatively estimated by the data on particle sizes and scattering intensity using the Rayleigh-Gans-Debye approximation. It is shown that ultrasonic processing improves the aggregative stability of suspension; in a suspension of particles produced under USC, large aggregates eventually decay into individual small particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Bulychev, M. A. Kazaryan, L. L. Chaikov, et al., Kratkie Soobshcheniya po Fizike 41(9), 33 (2014) [Bulletin of the Lebedev Physics Institute 41, 264 (2014)].

    Google Scholar 

  2. R. F. Ganiev, N. A. Bulychev, V.N. Fomin, et al., Dokl.Chem. 407, 54 (2006).

    Article  Google Scholar 

  3. N. A. Bulychev, E.V. Kisterev, I. A. Arutunov, and V. P. Zubov, Journal of the Balkan Tribological Association 1(14), 30 (2008).

    Google Scholar 

  4. N. A. Bulychev, Inorg. Mater. 46, 393 (2010).

    Article  Google Scholar 

  5. N. Bulychev, B. Dervaux, K. Dirnberger, et al., Macromol. Chem. Phys. 9, 971 (2010).

    Article  Google Scholar 

  6. Photon Correlation and Light Beating Spectroscopy, Ed. by H. Z. Cummins and E. R. Pike (Plenum, New York-London, 1974; Mir, Moscow, 1978).

    Google Scholar 

  7. N. A. Clark, J. H. Lunachek, and G. B. Benedek, Am. J. Phys. 38, 575 (1970).

    Article  ADS  Google Scholar 

  8. T. Palberg, H. Reiber, T. Köller, et al., Super-Heterodyne Light Scattering on Interacting Colloidal Suspensions: Theory and Experiment, ArXiv.org>cond-mat> arXiv:0811.2321 (2008).

    Google Scholar 

  9. G. Mie, Ann. Phys. 25, 377 (1908).

    Article  MATH  Google Scholar 

  10. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1980).

    Google Scholar 

  11. I.M. Tiginyanu, Appl. Phys. Lett. 78, 1074 (2001).

    Article  ADS  Google Scholar 

  12. K. F. Boren and P. R. Hafmen, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  13. H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York 1981; Inostrannaya Literatura, Moscow, 1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Chaikov.

Additional information

Original Russian Text © I.S. Burkhanov, L.L. Chaikov, N.A. Bulychev, M.A. Kazaryan, V.I. Krasovskii, 2014, published in Kratkie Soobshcheniya po Fizike, 2014, Vol. 41, No. 10, pp. 38–49.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkhanov, I.S., Chaikov, L.L., Bulychev, N.A. et al. Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 2. Sizes and stability. Dynamic light scattering study. Bull. Lebedev Phys. Inst. 41, 297–304 (2014). https://doi.org/10.3103/S1068335614100054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335614100054

Keywords

Navigation