Skip to main content
Log in

Features of the motion of particles suspended in liquid under an applied field

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

It is experimentally shown that a tenfold-hundredfold increase in the effective diffusion coefficient along the direction perpendicular to an applied electric field takes place in various emulsions and suspensions. It is caused by electrophoretic motion of particles. In inverse emulsions and many suspensions, only a certain fraction of dispersed material is contained in particles whose average radius is determined by the dynamic light scattering method. It is shown that the average coherence time of light scattered by silicon particle suspensions at a constant laser power depends on the beamdiameter. This means that semiconductor particles are characterized by strong nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. S. Greger, S. V. Krivokhizha, E. S. Laptev, and L. L. Chaikov, Kratkie Soobshcheniya po Fizike FIAN 37(9), 3 (2010) [Bulletin of the Lebedev Physics Institute 37, 263 (2010)].

    Google Scholar 

  2. S. S. Dukhov and B. V. Deryagin, Electrophoresis (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  3. J. Nestor, J. Esquena, C. Solans, et al., J. Colloid. Interface Sci. 311, 430 (2007).

    Article  Google Scholar 

  4. T. Palberg and H. Versmold, J. Phys. Chem. 93, 5296 (1989).

    Article  Google Scholar 

  5. T. Palberg, H. Reiber, T. Köller, et al., “Super-Heterodyne Light Scattering on Interacting Colloidal Suspensions: Theory and Experiment, ” ArXiv.org>cond-mat>arXiv:0811.2321 (2008).

  6. V. Shilov, S. Barany, C. Grosse, and O. Shramko, Adv. Colloid Interface Sci. 104, 159 (2003).

    Article  Google Scholar 

  7. S. Barany, F. Madai, and V. Shilov, Progr. Colloid Polymer Sci. 128, 14 (2004).

    Google Scholar 

  8. O. D. Lavrentovich, I. Laso, and O. P. Pishnyak, Nature 467, 947 (2010).

    Article  ADS  Google Scholar 

  9. A. V. Ryzhkova, F. V. Podgornov, and W. Haase. Appl. Phys. Lett. 96, 151901 (2010).

    Article  ADS  Google Scholar 

  10. Photon Correlation and Light Beating Spectroscopy, Ed. by H. Z. Cummins and E. R. Pike (Plenum, New York-London, 1974; Mir, Moscow, 1978).

    Google Scholar 

  11. N. A. Clark, J. H. Lunachek, and G. B. Benedek, Am. J. Phys. 38, 575 (1970).

    Article  ADS  Google Scholar 

  12. A. Einstein, ZS für Elektrochemie, 14, 235 (1908).

    Article  Google Scholar 

  13. M. Smoluchowski, Phys. ZS, 13, 1069 (1912).

    Google Scholar 

  14. V. N. Lopatin, A. V. Priezzhaev, A. D. Aponasenko, et al., Light Scattering Methods in the Analysis of Dispersed BiologicalMedia (Fizmatlits, Moscow, 2004) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Krivokhizha.

Additional information

Original Russian Text © S.V. Krivokhizha, E.S. Lapteva, L.L. Chaikov, D.M. Shapovalova, 2011, published in Kratkie Soobshcheniya po Fizike, 2011, Vol. 38, No. 4, pp. 32–46.

About this article

Cite this article

Krivokhizha, S.V., Lapteva, E.S., Chaikov, L.L. et al. Features of the motion of particles suspended in liquid under an applied field. Bull. Lebedev Phys. Inst. 38, 111–119 (2011). https://doi.org/10.3103/S1068335611040051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335611040051

Keywords

Navigation