Skip to main content
Log in

A renewal approach to Markovian U-statistics

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

In this paper we describe a novel approach to the study of U-statistics in the Markovian setup based on the (pseudo-) regenerative properties of Harris Markov chains. Exploiting the fact that any sample path X 1, ..., X n of a general Harris chain X may be divided into asymptotically i.i.d. data blocks \(\mathcal{B}_1 , \ldots \mathcal{B}_N\) of random length corresponding to successive (pseudo-) regeneration times, we introduce the notion of regenerative U-statistic Ω N = Σ kl ω h \(\left( {\mathcal{B}_k ,\mathcal{B}_l } \right)\)/(N(N − 1)) related to a U-statistic U n = Σ ij h(X i , X j )/(n(n − 1)). We show that, under mild conditions, these two statistics are asymptotically equivalent up to the order O (n−1). This result serves as a basis for establishing limit theorems related to statistics of the same form as U n . Beyond its use as a technical tool for proving results of a theoretical nature, the regenerative method is also employed here in a constructive fashion for estimating the limiting variance or the sampling distribution of certain U-statistics through resampling. The proof of the asymptotic validity of this statistical methodology is provided, together with an illustrative simulation result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aaronson, R. Burton, H. G. Dehling, D. Gilat, T. Hill, and B. Weiss, “Strong Laws for L- and U-Statistics”, Trans. Amer. Math. Soc. 348, 2845–2866 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Asmussen, Applied Probability and Queues (Springer, New York, 2003).

    MATH  Google Scholar 

  3. K. B. Athreya and G. S. Atuncar, “Kernel Estimation for Real-Valued Markov Chains”, Sankhya 60(1), 1–17 (1998).

    MATH  MathSciNet  Google Scholar 

  4. K. B. Athreya and P. Ney, “A New Approach to the Limit Theory of Recurrent Markov Chains”, Trans. Amer. Math. Soc. 245, 493–501 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  5. K. B. Athreya, D. McDonald, and P. Ney, “Limit Theorems for Semi-Markov Processes and Renewal Theory for Markov Chains”, Ann. Probab. 6(5), 788–797 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  6. N. G. Becker and S. Utev, “Threshold Results for U-Statistics of Dependent Binary Variables”, J. Theor. Probab. 14(1), 97–114 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  7. W. Bednorz,K. Latuszynski, and R. Latala, “A RegenerationProof of the Central Limit Theorem forUniformly ErgodicMarkov Chains”, Elect. Comm. Probab. 13, 85–98 (2008).

    MATH  MathSciNet  Google Scholar 

  8. P. Bertail and S. Clémençon, “Edgeworth Expansions for Suitably Normalized Sample Mean Statistics of Atomic Markov Chains”, Probab. Theory Rel. Fields 130(3), 388–414 (2004).

    Article  MATH  Google Scholar 

  9. P. Bertail and S. Clémençon, “Regenerative-Block Bootstrap for Markov Chains”, Bernoulli 12(4) (2005).

  10. P. Bertail and S. Clémençon, “Regeneration-Based Statistics for Harris Recurrent Markov Chains,” in Lecture Notes in Statist., Vol. 187: Probability and Statistics for Dependent Data, ed. by P. Doukhan, P. Bertail, and P. Soulier (Springer, 2006), pp. 1–54.

  11. P. Bertail, S. Clémençon, and J. Tressou, “Extreme Value Statistics for Markov Chains via the (Pseudo-)Regenerative Method”, Extremes (2009) (in press). Preprint available at http://hal.archives-ouvertes.fr/hal-00165652.

  12. P. Bertail and S. Clémençon, “Approximate Regenerative Block-Bootstrap for Markov Chains”, Comput. Statist. and Data Analysis 52(5), 2739–2756 (2007).

    Article  Google Scholar 

  13. P. Bertail and S. Clémençon, “Sharp Bounds for the Tails of Functionals of Markov Chains”, Theory Probab. Appl. 53(3), 505–515 (2009).

    Google Scholar 

  14. P. Bertail, S. Clémençon, and J. Tressou, Regenerative Block-Bootstrap Confidence Intervals for the Extremal Index of Markov Chains”, in Intern. Workshop in Appl. Probab., 2008. Available at http://hal.archives-ouvertes.fr/hal-00214306/fr/.

  15. E. Bolthausen, “The Berry-EsséenTheorem for Functionals of DiscreteMarkov Chains”, Z.Wahrsch. Verw. Geb. 54(1), 59–73 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Bolthausen, “The Berry-Esséen Theorem for Strongly Mixing Harris Recurrent Markov Chains”, Z. Wahrsch. Verw. Geb. 60(3), 283–289 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Borovkova, R. Burton, and H. G. Dehling, “Consistency of the Takens Estimator for the Correlation Dimension”, Ann. Appl. Probab. 9(2), 376–390 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Borovkova, R. Burton, and H. G. Dehling, “From Dimension Estimation to Asymptotics of Dependent U-Statistics”, in Limit Theorems in Probab. and Statist. I, ed. by I. Berkes, E. Csaki, and M. Csörgő (Budapest, 1999), pp. 201–234.

  19. S. Borovkova, R. Burton, and H. G. Dehling, “Limit Theorems for Functionals of Mixing Processes with Applications to U-Statistics and Dimension Estimation”, Trans. Amer. Math. Soc. 353, 4261–4318 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  20. H. Callaert and N. Veraverbeke, “The Order of the Normal Approximation for a Studentized U-Statistic”, Ann. Statist. 9(1), 194–200 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Clémençon, “Adaptive Estimation of the Transition Density of a Regular Markov Chain by Wavelet Methods”,Math. Methods Statist. 9(4), 323–357 (2000).

    MATH  MathSciNet  Google Scholar 

  22. S. Clémençon, “Moment and Probability Inequalities for Sums of Bounded Additive Functionals of a Regular Markov Chains via the Nummelin Splitting Technique”, Statist. Probab. Lett. 55, 227–238 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  23. H. G. Dehling, Limit Theorems for Dependent U-Statistics, in Lecture Notes in Statist. (2006), Vol. 187, pp. 65–86.

    Article  MathSciNet  Google Scholar 

  24. M. Denker and G. Keller, “On U-Statistics and von Mises Statistics for Weakly Dependent Processes”, Z. Wahrsch. Verw. Geb. 64, 505–522 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Denker and G. Keller, “Rigorous Statistical Procedures for Data from Dynamical Systems”, J. Statist. Phys. 44, 67–93, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  26. W. Doeblin, “Sur deux problemes de M. Kolmogorov concernant les chaînes dénombrables”, Bull. Soc. Math. de France 66, 210–220 (1938).

    MathSciNet  Google Scholar 

  27. W. Doeblin, “Eléments d’une théorie générale des chaînes simple constantes de Markov”, Ann. Sci. Ecole Norm. Sup. 37(3), 61–111 (1940).

    Google Scholar 

  28. R. Douc, A. Guillin, and E. Moulines, “Bounds on Regeneration Times and Limit Theorems for Subgeometric Markov Chains”, Ann. Inst. H. Poincaré-Probab. et Statist. 44(2), 239–257 (2008). 0246-0203.

    Article  MATH  MathSciNet  Google Scholar 

  29. P. Doukhan, Mixing: Properties and Examples, in Lecture Notes in Statist. (Springer, New York, 1984), Vol. 85.

    Google Scholar 

  30. J. Dubinskaite, “Limit Theorems in ℝk”, Lithuanian Math. J. 24, 256–265 (1984).

    Article  Google Scholar 

  31. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte Carlo in Practice (Chapman & Hall, 1996).

  32. J. Hájek, “Asymptotically Most Powerful Rank Tests”, Ann. Math. Statist. 33, 1124–1147 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  33. W. Hoeffding, “A Class of Statistics with Asymptotically Normal Distribution”, Ann. Statist. 19, 293–325 (1948).

    Article  MATH  MathSciNet  Google Scholar 

  34. J. L. Jensen, “Asymptotic Expansions for Strongly Mixing Harris Recurrent Markov Chains”, Scand. J. Statist. 16, 47–63 (1989).

    MATH  MathSciNet  Google Scholar 

  35. V. V. Kalashnikov, Topics on Regenerative Processes (CRC Press, 1994).

  36. S. N. Lahiri, Resampling Methods for Dependent Data (Springer, 2003).

  37. V. K. Malinovskii, “On Limit Theorems for the Number of Markov Renewals”, in Lecture Notes in Math., B (Springer, 1985), Vol. 1155, pp. 190–222.

    Article  MathSciNet  Google Scholar 

  38. V. K. Malinovskii, “Second Order Efficiency of an Asymptotically Efficient Test Based on Markov Observations”, Theor. Probab. Appl. 30, 603–608 (1985).

    Article  MathSciNet  Google Scholar 

  39. V. K. Malinovskii, “On Some Asymptotic Relations and Identities for Harris Recurrent Markov Chains”, in Statistics and Control of Stochastic Processes (1985), pp. 317–336.

  40. V. K. Malinovskii, “Limit Theorems for HarrisMarkov Chains. I”, Theory Probab. Appl. 31, 269–285 (1987).

    Article  Google Scholar 

  41. V. K. Malinovskii, “Limit Theorems for Recurrent Semi-MarkovProcesses and Markov Renewal Processes”, J. Soviet Math. 36, 493–502 (1987).

    Article  Google Scholar 

  42. V. K. Malinovskii, “On Integral and Local Limit Theorems for Recurrent Markov Renewal Processes”, J. Soviet Math. 57(4), 3286–3301 (1988).

    Article  Google Scholar 

  43. V. K. Malinovskii, “On a Limit Theorem for Dependent Random Variables”, Ann. Acad. Sci. Fenicae, Ser. A.I. Mathematica 13, 225–229 (1988).

    MathSciNet  Google Scholar 

  44. V. K. Malinovskii, “Limit Theorems for Harris Markov chains. II”, Theory Probab. Appl. 34, 252–265 (1989).

    Article  MathSciNet  Google Scholar 

  45. V. K. Malinovskii, “Asymptotic Optimality of Tests in a Hypothesis Testing Problem for Recurrent Jump Markov Processes”, J. Soviet Math. 44, 403–510 (1989).

    Article  MathSciNet  Google Scholar 

  46. V. K. Malinovskii, “Power Functions and the Defficiency of Asymptotically Efficient Tests in the Case of Markov observations”, Theor. Probab. Appl. 34, 441–453 (1989).

    Article  MathSciNet  Google Scholar 

  47. V. K. Malinovskii, “Large Deviations for Recurrent Markov Renewal Processes”, Theor. Probab. Appl. 36, 170–173 (1991).

    Article  MathSciNet  Google Scholar 

  48. V. K. Malinovskii, “Asymptotic Optimality of Criteria in the Problem of Testing Hypotheses for a Recurrent Semi-Markov Processes”, J. Soviet. Math. 59(4), 955–959 (1992).

    Article  MathSciNet  Google Scholar 

  49. V. K. Malinovskii, “Limit Theorems for Stopped Random Sequences. I. Rates of Convergence and Asymptotic Expansions”, Theor. Probab. Appl. 38, 673–693 (1993).

    Article  MathSciNet  Google Scholar 

  50. V. K. Malinovskii, “Asymptotic Expansions in the Sequential Estimation of an Autoregressive Parameter”, Math. Methods Statist. 2, 206–227 (1993).

    MathSciNet  Google Scholar 

  51. V. K. Malinovskii, “Asymptotic Expansions in Sequential Estimation for the first Order Random Coefficient Autoregressive Model: Regenerative Approach”, Acta Applicandae Mathematica 34, 261–281 (1994).

    Article  MathSciNet  Google Scholar 

  52. V. K. Malinovskii, “Limit Theorems for Stopped Random Sequences. II. Probabilities of Large Deviations”, Theor. Probab. Appl. 41(1), 70–90 (1996).

    MATH  MathSciNet  Google Scholar 

  53. S. P. Meyn and R. L. Tweedie,Markov Chains and Stochastic Stability (Springer, 1996).

  54. E. Nummelin, “A splitting technique for Harris recurrent chains”, Z. Wahrsch. Verw. Geb. 43, 309–318 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  55. E. Nummelin, “Uniform and Ratio Limit Theorems for Markov Renewal and Semi-Regenerative Processes on a General State Space”, Ann. Inst. H. Poincare, Sect. B. V.XIV(2), 119–143 (1978).

    MathSciNet  Google Scholar 

  56. E. Nummelin, “General Irreducible Markov Chains and Non-Negative Operators”, Cambridge Tracts in Math. (1984).

  57. V. V. Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random Variables (Oxford Science Publ., 1995).

  58. D. Revuz, Markov Chains, 2nd ed. (North-Holland, 1984).

  59. E. Rio, Théorie asymptotique des processus al éatoires faiblement d épendants, in Mathématiques et Applications (Springer, 2000), Vol. 31.

  60. C. P. Robert and R. Casella, Monte Carlo Statistical Methods (Springer, 1999).

  61. R. J. Serfling, Approximation Theorems of Mathematical Statistics (Wiley, New York, 1980).

    Book  MATH  Google Scholar 

  62. G. Shorack, Probability for Statisticians (Springer, 2000).

  63. I.G. Shevtsova, “Sharpening of the Upper Bound of the Absolute Constant in the Berry-Esséen Inequality”, Theory Probab. Appl. 51(3), 549–553 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  64. W. L. Smith, “Regenerative Stochastic Processes”, Proc. Roy. Statist. Soc. 232, 6–31 (1955).

    Article  MATH  Google Scholar 

  65. H. Thorisson, Coupling, Stationarity, and Regeneration (Springer, New York, 2000).

    MATH  Google Scholar 

  66. P. Tuominen and R. L. Tweedie, “Subgeometric Rates of Convergence of f-Ergodic Markov Chains”, Adv. Appl. Probab. 26, 775–798 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  67. K. Yoshihara, “Limiting Behavior of U-Statistics for Stationary Absolurely Regular Processes”, Z. Wahrsch. Verw. Geb. 35, 237–252 (1976).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Clémençon.

About this article

Cite this article

Bertail, P., Clémençon, S. A renewal approach to Markovian U-statistics. Math. Meth. Stat. 20, 79–105 (2011). https://doi.org/10.3103/S1066530711020013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530711020013

Keywords

2000 Mathematics Subject Classification

Navigation