Skip to main content
Log in

Oracle convergence rate of posterior under projection prior and Bayesian model selection

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

We apply the Bayes approach to the problem of projection estimation of a signal observed in the Gaussian white noise model and we study the rate at which the posterior distribution concentrates about the true signal from the space ℓ2 as the information in observations tends to infinity. A benchmark is the rate of a so-called oracle projection risk, i.e., the smallest risk of an unknown true signal over all projection estimators. Under an appropriate hierarchical prior, we study the performance of the resulting (appropriately adjusted by the empirical Bayes approach) posterior distribution and establish that the posterior concentrates about the true signal with the oracle projection convergence rate. We also construct a Bayes estimator based on the posterior and show that it satisfies an oracle inequality. The results are nonasymptotic and uniform over ℓ2. Another important feature of our approach is that our results on the oracle projection posterior rate are always stronger than any result about posterior convergence with the minimax rate over all nonparametric classes for which the corresponding projection oracle estimator is minimax over this class. We also study implications for the model selection problem, namely, we propose a Bayes model selector and assess its quality in terms of the so-called false selection probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Belitser and F. Enikeeva, “Empirical Bayesian Test for the Smoothness”, Math. Methods Statist. 17, 1–18 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Belitser and S. Ghosal, “Adaptive Bayesian Inference on the Mean of an Infinite-Dimensional Normal Distribution”, Ann. Statist. 31, 536–559 (2003).

    Article  MathSciNet  Google Scholar 

  3. E. Belitser and B. Levit, “On Minimax Filtering over Ellipsoids”, Math. Methods Statist. 3, 259–273 (1995).

    MathSciNet  Google Scholar 

  4. L. Birgé and P. Massart, “Gaussian Model Selection”, J. Eur. Math. Soc. 3, 203–268 (2001).

    Article  MATH  Google Scholar 

  5. L. D. Brown and M. G. Low, “Asymptotic Equivalence of Nonparametric Regression and White Noise”, Ann. Statist. 24, 2384–2398 (1995).

    MathSciNet  Google Scholar 

  6. L. Cavalier, G. K. Golubev, D. Picard, and A. B. Tsybakov, “Oracle Inequalities for Inverse Problems”, Ann. Statist. 30, 843–874 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Cavalier and A. Tsybakov, “Penalized Blockwise Stein’s Method, Monotone Oracles and Sharp Adaptive Estimation”, Math. Methods Statist. 10, 247–282 (2001).

    MATH  MathSciNet  Google Scholar 

  8. S. Efromovich and M. Pinsker, “A Learning Algorithm for Nonparametric Filtering”, Automat. Remote Control. 24, 1434–1440 (1984).

    Google Scholar 

  9. S. Ghosal, J. K. Ghosh and A. W. van der Vaart, “Convergence Rates of Posterior Distributions”, Ann. Statist. 28, 500–531 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  10. G. K. Golubev, “On a Method for Minimizing Empirical Risk”, Problems Inform. Transmission. 40, 202–211 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. Golubev and B. Levit, “An Oracle Approach to Adaptive Estimation of Linear Functionals in a Gaussian Model”, Math. Methods Statist. 13, 392–408 (2004).

    MATH  MathSciNet  Google Scholar 

  12. M. Hoffmann and O. Lepski, “Random Rates in Anisotropic Regression”, Ann. Statist. 28, 325–396 (2002).

    Article  MathSciNet  Google Scholar 

  13. I. A. Ibragimov and R. Z. Khasminski, Statistical Estimation: Asymptotic Theory (Springer, New York, 1981).

    MATH  Google Scholar 

  14. I. Johnstone, Function Estimation in Gaussian Noise: Sequence models (Monograph draft, 1999), http://www-stat.stanford.edu/~imj/.

  15. A. Kneip, “Ordered Linear Smoothers”, Ann. Statist. 22, 835–866 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Pinsker, “Optimal Filtration of Square-Integrable Signal in Gaussian White Noise”, Problems Inform. Transmission. 16, 120–133 (1980).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Belitser.

About this article

Cite this article

Babenko, A., Belitser, E. Oracle convergence rate of posterior under projection prior and Bayesian model selection. Math. Meth. Stat. 19, 219–245 (2010). https://doi.org/10.3103/S1066530710030026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530710030026

Key words

2000 Mathematics Subject Classification

Navigation