Skip to main content
Log in

Edgeworth expansions for stochastic approximation theory

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

To estimate the root ϑ of an unknown regression function f: ℝ → ℝ the iterative Robbins-Monro method X n+1 = X n a/nY n with noisy observations Y n = f(X n ) + V n of f(X n ) can be used. It is well known that X n ϑ can be approximated by a weighted sum of the observation errors V n . As recently shown this approximation can be improved by adding quadratic and cubic forms in the observation errors. This paper presents valid Edgeworth expansions of the distribution function of the approximating sequence up to a remainder term of order o(1/√n) or even o(1/n).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. E. Barndorff-Nielsen and D. R. Cox, Asymptotic Techniques for Use in Statistics (Chapman and Hall, London, 1989).

    MATH  Google Scholar 

  2. V. Bentkus, F. Götze, V. Paulauskas, and A. Račkauskas, The Accuracy of Gaussian Approximation in Banach Spaces, Technical report, (Universität Bielefeld, Bielefeld, 1990).

    Google Scholar 

  3. R. N. Bhattacharya and R. R. Rao, Normal Approximation and Asymptotic Expansions (Wiley, New York, 1986).

    MATH  Google Scholar 

  4. P. J. Bickel, F. Götze, and W. R. van Zwet, “The Edgeworth Expansion for U-Statistics of Degree Two”, Ann. Statist. 14, 1463–1484 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Callaert, P. Janssen, and N. Veraverbeke, “An Edgeworth Expansion for U-Statistics”, Ann. Statist. 8, 299–312 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Dippon, “Higher Order Representations of the Robbins-Monro Process”, J. Multivar. Anal. 90, 301–326 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Dippon, “Moments and Cumulants in Stochastic Approximation” (in press).

  8. J. Dippon, “Asymptotic Expansions of the Robbins-Monro Process”, Math. Methods Statist. (in press).

  9. P. Hall, The Bootstrap and Edgeworth Expansion (Springer, New York, 1992).

    Google Scholar 

  10. R. Helmers, Edgeworth Expansions for Linear Combinations of Order Statistics, 2nd ed. (Mathematical Centre 105, Amsterdam, 1984).

    Google Scholar 

  11. M. Loeve, Probability Theory, 3rd ed. (Van Nostrand, Princeton, 1963).

    MATH  Google Scholar 

  12. V. V. Petrov, Sums of Independent Random Variables (Springer, Berlin, 1975).

    Google Scholar 

  13. V. V. Petrov, Limit Theorems of Probability Theory (Clarendon Press, Oxford, 1995).

    MATH  Google Scholar 

  14. B. T. Polyak and A. B. Juditsky, “Acceleration of Stochastic Approximation by Averaging”, SIAM J. Control and Optimization 30, 838–855 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Robbins and S. Monro, “A Stochastic Approximation Method”, Ann. Math. Statist. 22, 400–407 (1951).

    Article  MathSciNet  Google Scholar 

  16. H. Walk, “An Invariance Principle for the Robbins-Monro Process in a Hilbert Space”, Z. Wahrsch. verw. Gebiete 39, 135–150 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  17. B. Zhidong and Z. Lincheng, “Edgeworth Expansions of Distribution Functions of Independent Random Variables”, Scientia Sinica 29, 1–22 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dippon.

About this article

Cite this article

Dippon, J. Edgeworth expansions for stochastic approximation theory. Math. Meth. Stat. 17, 44–65 (2008). https://doi.org/10.3103/S1066530708010043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530708010043

Key words

2000 Mathematics Subject Classification

Navigation