Skip to main content
Log in

Uniformly continuous dependence of a solution to a controlled functional operator equation on a shift of control

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We establish sufficient conditions for the uniform (with respect to the set of admissible controls) continuous dependence of a solution to a controlled functional operator equation on a shift of control along a vector of independent variables. The shift of control may mean, in particular, some time delay (or outstripping) of the control. We illustrate the use of general results by an example of a mixed boundary-value problem associated with a wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.M. Fedorov, A Course in Functional Analysis (Lan’, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  2. G. L. Kharatishvili, “The Maximum Principle in the Theory of Optimal Processes with Delay,” Sov. Phys. Dokl. 136(1), 39–42 (1961).

    Google Scholar 

  3. K. K. Gasanov, “A Maximum Principle for Processes with Distributed Parameters and a Retarded Argument,” Differents. Uravneniya 9(4), 743–746 (1973).

    MathSciNet  MATH  Google Scholar 

  4. T. K. Sirazetdinov, Optimization of Systems with Distributed Parameters (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  5. G. Knowles, “The Optimal Control of Parabolic Systems with Boundary Conditions Involving Time Delay,” J. Optim. Theory Appl. 25(4), 563–574 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Kowalewski, “Minimum Time Problem for Distributed Hyperbolic Systems with Time Lags,” IMA J. Math. Control Inf. 20(3), 263–275 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Masiero, “Stochastic Optimal Control Problems and Parabolic Equations in Banach Spaces,” SIAM J. Contr. Optim. 47(1), 251–300 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. L. Tonkov, “Shift Dynamical System and Uniform Controllability Problems of a Linear System,” Sov. Phys. Dokl. 256(2), 290–294 (1981).

    MathSciNet  Google Scholar 

  9. E. L. Tonkov, “Shift Dynamical System and Global Controllability of a Linear Almost Periodic System,” Usp. Mat. Nauk 36(4(220)), 226 (1981).

    Google Scholar 

  10. A. V. Chernov, “Volterra Functional-Operator Games with a Floating Chain,” Vestn. Nizhegorodsk. Univ., No. 2 (1), 142–148 (2012).

    Google Scholar 

  11. A. V. Chernov, “On Existence of ɛ-Equilibrium in Volterra Functional-Operator Games without Discrimination,” Mat. Teor. Igr Pril. 4(1), 74–92 (2012).

    Google Scholar 

  12. A. V. Chernov, “A Majorant Criterion for the Total Preservation of Global Solvability of Controlled Functional Operator Equation,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 95–107 (2011) [Russian Mathematics (Iz. VUZ) 55 (3), 85–95 (2011)].

    Google Scholar 

  13. A. V. Chernov, A Majorant-Minorant Criterion for the Total Preservation of Global Solvability of a Functional Operator Equation, Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 62–73 (2012) [Russian Mathematics (Iz. VUZ) 56 (3), 55–65 (2012)].

    Google Scholar 

  14. A. V. Chernov, “On Volterra Type Generalization of Monotonization Method for Nonlinear Functional Operator Equations,” Vestn. Udmurtsk. Univ. Matem. Mekhan. Komp. Nauki, No. 2, 84–99 (2012).

    Google Scholar 

  15. A. V. Chernov, “On Convergence of Fixed Point Iteration Method for Solving Nonlinear Functional Operator Equations,” Vestn. Nizhegorodsk. Univ. No. 4 (1), 149–155 (2011).

    Google Scholar 

  16. A. V. Chernov, “Sufficient Conditions for the Controllability of Nonlinear Distributed Systems,” Zhurn. Vychisl. Matem. i Matem. Fiz. 52(8), 1400–1414 (2012).

    Google Scholar 

  17. V. I. Sumin and A. V. Chernov, “Operators in Spaces of Measurable Functions: the Volterra Property and Quasinilpotency,” Differents. Uravneniya 34(10), 1402–1411 (1998).

    MathSciNet  Google Scholar 

  18. V. I. Sumin and A. V. Chernov, “On Some Indicators of the Quasi-Nilpotency of Functional Operators,” Izv. Vyssh. Uchebn. Zaved.Mat., No. 2, 77–80 (2000) [Russian Mathematics (Iz. VUZ) 44 (2), 75–78 (2000)]

    Google Scholar 

  19. B. Sh. Mordukhovich, Approximation Methods in Problems of Optimization and Control (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  20. Yu. L. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  21. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  22. B. Z. Vulikh, Theory of Functions of a Real Variable (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  23. I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976; Mir, Moscow, 1979).

    MATH  Google Scholar 

  24. M. A. Krasnosel’skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chernov.

Additional information

Original Russian Text © A.V. Chernov, 2013, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2013, No. 5, pp. 36–50.

About this article

Cite this article

Chernov, A.V. Uniformly continuous dependence of a solution to a controlled functional operator equation on a shift of control. Russ Math. 57, 29–41 (2013). https://doi.org/10.3103/S1066369X13050046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X13050046

Keywords and phrases

Navigation