Skip to main content
Log in

Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Chromium tetraboride (CrB4), a recently proposed candidate for superhard materials, has been synthesized at high pressure and temperature by a solid-state reaction. As a byproduct, chromium diboride (CrB2) also forms and co-exists with CrB4 in the final product. The comparative studies of crystal structure, elastic property, and hardness of both phases have been conducted at the same sample environment conditions. The crystal structure of CrB4 has been refined with an orthorhombic symmetry of Immm(space group no. 71) or Pnnm (space group no. 58) using X-ray diffraction data. Further simulations indicate that the structural distinction between Immm and Pnnm can be resolved by neutron diffraction, due to the high scattering cross-section of boron (11B) by neutrons. Although CrB2 and CrB4 have close bulk modulus at about 230 GPa, the measured asymptotic Vickers hardness yields 16 GPa for CrB2 but 30 GPa for CrB4, which is nearly two times that of CrB2. The dramatic enhancement in hardness in CrB4 is attributed to the strong three-dimensional Cr-B network, in contrast to the layered lattice structure of hexagonal CrB2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ivanovskii, A.L., The search for novel superhard and incompressible materials on the basis of higher borides of s, p, d metals, J. Superhard Mater., 2011, vol. 33, no. 2, pp. 73–87.

    Article  Google Scholar 

  2. Veprek, S., Zhang, R.F., and Argon, A.S, Mechanical properties and hardness of boron and boron-rich solids, Ibid., 2011, vol. 33, no. 6, pp. 409–420.

    Article  Google Scholar 

  3. Zachary, Z., New superhard ternary borides in composite materials, In New Superhard Ternary Borides in Composite Materials, Metal, Ceramic and Polymeric Composites for Various Uses, Cuppoletti, J., Ed, Int. Tech, 2011, pp. 61–78.

    Google Scholar 

  4. Brazhkin, V.V., Lyapin, A.G., and Hemley, R.J., Harder than diamond: Dreams and reality, Phil. Mag. A, 2002, vol. 82, no. 2, pp. 231–253.

    Article  CAS  Google Scholar 

  5. Brazhkin, V., Dubrovinskaia, N., Nicol, M., Novikov, N., Riedel, R., Solozhenko, V., and Zhao, Y., From our readers: What does ‘harder than diamond’ mean? Nature Mater., 2004, vol. 3, no. 9, pp. 576–577.

    Article  CAS  Google Scholar 

  6. Pierson, H.O., Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications, Westwood, NY: Noyes Publications, 1996.

    Google Scholar 

  7. Chung, H.-Y., Weinberger, M.B., Levine, J.B., Kavner, A., Yang, J.-M., Tolbert, S.H., and Kaner, R.B., Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Science, 2007, vol. 316, no. 5823, pp. 436–439.

    Article  CAS  Google Scholar 

  8. Dubrovinskaia, N., Dubrovinsky, L., and Solozhenko, V.L., Comment on “Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure”, Ibid., 2007, vol. 318, no. 5856, p. 1550.

    Article  Google Scholar 

  9. Qin, J., He, D., Wang, J., Fang, L., Lei, L., Li, Y., Hu, J., Kou, Z., and Bi, Y., Is rhenium diboride a superhard material? Adv. Mater., 2008, vol. 20, no. 24, pp. 4780–4783.

    Article  CAS  Google Scholar 

  10. Gu, Q., Krauss, G., and Steurer, W., Transition metal borides: superhard versus ultra-incompressible, Ibid., 2008, vol. 20, no. 19, pp. 3620–3626.

    Article  CAS  Google Scholar 

  11. Mohammadi, R., Lech, A.T., Xie, M., Weaver, B.E., Yeung, M.T., Tolbert, S.H., and Kaner, R.B., Tungsten tetraboride, an inexpensive superhard material, Proc. Nat. Acad. Sci., 2011, vol. 108, no. 27, pp. 10958–10962.

    Article  CAS  Google Scholar 

  12. Mohammadi, R., Xie, M., Lech, A.T., Turner, C.L., Kavner, A., Tolbert, S.H., and Kaner, R.B., Toward inexpensive superhard materials: tungsten tetraboride-based solid solutions, J. Am. Chem. Soc., 2012, vol. 134, no. 51, pp. 20660–20668.

    Article  CAS  Google Scholar 

  13. Gou, H., Dubrovinskaia, N., Bykova, E., Tsirlin, A.A., Kasinathan, D., Schnelle, W., Richter, A., Merlini, M., Hanfland, M., Abakumov, A.M., Batuk, D., Van Tendeloo, G., Nakajima, Y., Kolmogorov, A.N., and Dubrovinsky, L., Discovery of a superhard iron tetraboride superconductor, Phys. Rev. Lett., 2013, vol. 111, no. 15, art. 157002.

    Google Scholar 

  14. Gou, H., Tsirlin, A.A., Bykova, E., Abakumov, A.M., Van Tendeloo, G., Richter, A., Ovsyannikov, S.V., Kurnosov, A.V., Trots, D.M., Konôpková, Z., Liermann, H.-P., Dubrovinsky, L., and Dubrovinskaia, N., Peierls distortion, magnetism, and high hardness of manganese tetraboride, Phys. Rev. B, 2014, vol. 89, no. 6, art. 064108.

    Google Scholar 

  15. Litterscheid, C., Knappschneider, A., and Albert, B., Single crystal structure of MnB4, Z. Anorg. Allg. Chem., 2012, vol. 638, no. 10, pp. 1608–1608.

    Article  Google Scholar 

  16. Knappschneider, A., Litterscheid, C., Dzivenko, D., Kurzman, J.A., Seshadri, R., Wagner, N., Beck, J., Riedel, R., and Albert, B., Possible superhardness of CrB4, Inorg. Chem., 2013, vol. 52, no. 2, pp. 540–542.

    Article  CAS  Google Scholar 

  17. Niu, H., Wang, J., Chen, X.-Q., Li, D., Li, Y., Lazar, P., Podloucky, R., and Kolmogorov, A.N., Structure, bonding, and possible superhardness of CrB4, Phys. Rev. B, 2012, vol. 85, no. 14, art. 144116.

    Google Scholar 

  18. Knappschneider, A., Litterscheid, C., Kurzman, J., Seshadri, R., and Albert, B., Crystal structure refinement and bonding patterns of CrB4: A boron-rich boride with a framework of tetrahedrally coordinated B atoms, Inorg. Chem., 2011, vol. 50, no. 21, pp. 10540–10542.

    Article  CAS  Google Scholar 

  19. Friedrich, A., Winkler, B., Bayarjargal, L., Morgenroth, W., Juarez-Arellano, E.A., Milman, V., Refson, K., Kunz, M., and Chen, K., Novel rhenium nitrides, Phys. Rev. Lett., 2010, vol. 105, no. 8, art. 085504.

    Google Scholar 

  20. Wang, S., Yu, X., Lin, Z., Zhang, R., He, D., Qin, J., Zhu, J., Han, J., Wang, L., Mao, H.-K., Zhang, J., and Zhao, Y., Synthesis, crystal structure, and elastic properties of novel tungsten nitrides, Chem. Mater., 2012, vol. 24, no. 15, pp. 3023–3028.

    Article  CAS  Google Scholar 

  21. Zhao, Z., Cui, L., Wang, L., Xu, B., Liu, Z., Yu, D., He, J., Zhou, X., Wang, H., and Tian, Y., Bulk Re2C: crystal structure, hardness, and ultra-incompressibility, Cryst. Growth Des., 2010, vol. 10, no. 12, pp. 5024–5026.

    Article  CAS  Google Scholar 

  22. Wang, M., Li, Y., Cui, T., Ma, Y., and Zou, G., Origin of hardness in WB4 and its implications for ReB4, TaB4, MoB4, TcB4, and OsB4, Appl. Phys. Lett., 2008, vol. 93, no. 10, art. 101905.

    Google Scholar 

  23. Zang, C., Sun, H., and Chen, C., Unexpectedly low indentation strength of WB3 and MoB3 from first principles, Phys. Rev. B, 2012, vol. 86, no. 18, art. 180101.

    Google Scholar 

  24. Zhang, R.F., Legut, D., Lin, Z.J., Zhao, Y.S., Mao, H.K., and Veprek, S., Stability and strength of transition-metal tetraborides and triborides, Phys. Rev. Lett., 2012, vol. 108, no. 25, art. 255502.

    Google Scholar 

  25. Qin, J., Nishiyama, N., Ohfuji, H., Shinmei, T., Lei, L., He, D., and Irifune, T., Polycrystalline Γ-boron: As hard as polycrystalline cubic boron nitride, Scr. Mater., 2012, vol. 67, no. 3, pp. 257–260.

    Article  CAS  Google Scholar 

  26. Mukhanov, V.A., Kurakevych, O.O., and Solozhenko, V.L., Thermodynamic model of hardness: Particular case of boron-rich solids, J. Superhard Mater., 2010, vol. 32, no. 3, pp. 167–176.

    Article  Google Scholar 

  27. Andersso, S. and Lundstro, T., Crystal structure of CrB4, Acta Chem. Scand., 1968, vol. 22, no. 10, pp. 3103–3110.

    Article  Google Scholar 

  28. Yang, M., Wang, Y., Yao, J., Li, Z., Zhang, J., Wu, L., Li, H., Zhang, J., and Gou, H., Structural distortion and band gap opening of hard MnB4 in comparison with CrB4 and FeB4, J. Solid State Chem., 2014, vol. 213, pp. 52–56.

    Article  CAS  Google Scholar 

  29. Wang, W., He, D., Wang, H., Wang, F., Dong, H., Chen, H., Li, Z., Zhang, J., Wang, S., Kou, Z., and Peng, F., Research on pressure generation efficiency of 6–8 type multianvil high pressure apparatus, Acta Phys. Sin, 2010, 59, no 5, pp. 3107–3115.

    CAS  Google Scholar 

  30. Toby, B.H., EXPGUI, a graphical user interface for GSAS, J. Appl. Cryst., 2001, vol. 34, pp. 210–213.

    Article  CAS  Google Scholar 

  31. Mao, H.K., Xu, J., and Bell, P.M., Calibration of the tuby pressure gauge to 800 kbar under quasi-hydrostatic conditions, J. Geophys. Res.: Solid Earth, 1986, vol. 91, no. B5, pp. 4673–4676.

    Article  CAS  Google Scholar 

  32. Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Hausermann, D., Two-dimensional detector software: from real detector to idealized image or two-theta scan, High Press. Res., 1996, vol. 14, nos. 4–6, pp. 235–248.

    Article  Google Scholar 

  33. Birch, F., Finite elastic strain of cubic crystals, Phys. Rev., 1947, vol. 71, no. 11, pp. 809–824.

    Article  CAS  Google Scholar 

  34. Okamoto, N.L., Kusakari, M., Tanaka, K., Inui, H., and Otani, S., Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2, Acta Mater., 2010, vol. 58, no. 1, pp. 76–84.

    Article  CAS  Google Scholar 

  35. Kurakevych, O.O. and Solozhenko, V.L., 300-K equation of state of rhombohedral boron subnitride, Solid State Commun., 2009, vol. 149, nos. 47–48, pp. 2169–2171.

    Article  CAS  Google Scholar 

  36. Nieto-Sanz, D., Loubeyre, P., Crichton, W., and Mezouar, M., X-ray study of the synthesis of boron oxides at high pressure: Phase diagram and equation of state, Phys. Rev. B, 2004, vol. 70, no. 21, art. 214108.

    Google Scholar 

  37. Nelmes, R.J., Loveday, J.S., Wilson, R.M., Marshall, W.G., Besson, J.M., Klotz, S., Hamel, G., Aselage, T.L., and Hull, S., Observation of inverted-molecular compression in boron carbide, Phys. Rev. Lett., 1995, vol. 74, no. 12, pp. 2268–2271.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhao.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yu, X., Zhang, J. et al. Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4 . J. Superhard Mater. 36, 279–287 (2014). https://doi.org/10.3103/S1063457614040066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457614040066

Keywords

Navigation