Skip to main content
Log in

Changes in the functional chemical composition of the surfaces and microhardness of kimberlite minerals under the action of nanosecond high voltage pulses

  • Proceedings of the Interdisciplinary Symposium “Ordering in Minerals and Alloys” OMA-18 and Proceedings of the International Interdisciplinary Symposium “Order, Disorder, and Properties of Oxides” ODPO-18
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Using a set of physicochemical methods (XPS, analytical electron microscopy, the adsorption of acid–base indicators, and measuring microhardness), the effectiveness of nonthermal action produced by nanosecond high voltage pulses for targeted changes in the phase (functional chemical) composition and technological properties of rock-forming minerals of kimberlites and diamonds is shown. According to data obtained via XPS and SEM-EDX analyses, pulse energy actions damage the surface microstructure of dielectric minerals with the subsequent formation of traces of surface breakdowns and microcracks, softening rockforming minerals, and reducing their microhardness by 40–66% overall. The following changes in the functional chemical composition of a geomaterial surface are established through the adsorption of acid–base indicators: mutual transformations of the Brønsted base, Lewis base, and Brønsted acid sites on a calcite surface under the action of an electromagnetic pulse and the hydroxylation and/or formation of carbonyl groups on a diamond surface, doubling the diamond electrokinetic potential in the negative range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chanturiya, V.A., Godun, K.V., Zhelyabovskii, Yu.G., and Goryachev, B.E., Gorn. Zh., 2015, no. 3, p. 67.

    Article  Google Scholar 

  2. Chanturiya, V.A. and Goryachev, B.E., in Progressivnye tekhnologii kompleksnoi pererabotki mineral’nogo syr’ya (Modern Technologies of Complex Processing of Mineral Raw Materials), Chanturiya, V.A., Ed., Moscow: Ruda i Metally, 2008, p. 151.

  3. Chanturiya, V.A., Dvoichenkova, G.P., Bunin, I.Zh., et al., Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2014, no. 6, p. 151.

    Google Scholar 

  4. Chanturiya, V.A. Gulyae., Yu.V., et al., Dokl. Akad. Nauk, 1999, vol. 366, no. 5, p. 680.

    Google Scholar 

  5. Bunin, I.Zh., Bunina, N.A., Vdovin, V.A., Voronov, P.S., Gulyaev, Yu.V., Korzhenevsskii, A.V., Lunin, V.D., Chanturiya, V.A., and Cherepenin, V.A., Bull. Russ. Acad. Sci:. Phys., 2001, vol. 65, no. 12, p. 1788.

    Google Scholar 

  6. Mesyats, G.A., Impul’snaya energetika i elektronika (Pulse Electrical Engineering and Electronics), Moscow: Nauka, 2004.

    Google Scholar 

  7. Cherepenin, V.A., Phys.-Usp., 2006, vol. 49, no. 10, p. 1097.

    Article  ADS  Google Scholar 

  8. Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Dolgoprudnyi: Intellekt, 2009.

    Google Scholar 

  9. Chanturiya, V.A., Bunin, I.Zh., Ryazantseva, M.V., and Khabarova, I.A., Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2013, no. 3, p. 157.

    Google Scholar 

  10. Chanturiya, V.A., Bunin, I.Zh., Ryazantseva, M.V., and Khabarova, I.A., Bull. Russ. Acad. Sci.: Phys., 2013, vol. 77, no. 9, p. 1096.

    Article  Google Scholar 

  11. Adamson, A.W. and Gast, A.P., Physical Chemistry of Surfaces, New York, Chichester, Weunheim, Brisbane, Singapore, Toronto: John Wiley and Sons, 1997.

    Google Scholar 

  12. Minenko, V.G. and Bogachev, V.I., Obogashch. Rud, 1999, nos. 1–2, p. 36.

    Google Scholar 

  13. Solid Acids and Bases, Tanabe, K., Misono, M., Hattori, H., and Ono, Y., Eds., Elsevier Sci., 1989.

  14. Nechiporenko, A.P., Burenina, T.A., and Kol’tsov, S.I., Zh. Obshch. Khim., 1985, vol. 55, no. 9, p. 1907.

    Google Scholar 

  15. Ryazantseva, M.V. and Bunin, I.Zh., Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2015, no. 5, p. 140.

    Google Scholar 

  16. Kurochkin, V.E., Krasovskii, A.N., Vasil’eva, I.V., et al., Nauchn. Priborostr., 2008, vol. 18, no. 2, p. 3.

    Google Scholar 

  17. Schulze, R.K., Hill, M.A., Field, R.D., et al., Energy Convers. Manage, 2004, vol. 45, no. 20, p. 3169.

    Article  Google Scholar 

  18. Mohammadnejad, S., Provis, J.L., and van Deventer, J.S.J., Miner. Eng., 2013, vol. 52, p. 31.

    Article  Google Scholar 

  19. Zakaznova-Herzog, V.P., Nesbitt, H.W., Bancroft, G.M., and Tse, J.S., Geochim. Cosmochim. Acta, 2014, vol. 72, no. 1, p. 69.

    Article  ADS  Google Scholar 

  20. XPS Database. http://srdata.nist.gov/xps/.

  21. Chanturiya, V.A., Bunin, I.Zh., and Kovalev, A.T., Bull. Russ. Acad. Sci.: Phys., 2007, vol. 71, no. 5, p. 646.

    Article  Google Scholar 

  22. Pikaev, A.K., Sovremennaya radiatsionnaya khimiya. Radioliz gazov i zhidkostei (Modern Radiation Chemistry. Radiolysis of Gases and Fluids), Moscow: Nauka, 1986.

    Google Scholar 

  23. Ivanova, T.A., Bunin, I.Zh., and Khabarova, I.A., Bull. Russ. Acad. Sci.: Phys., 2008, vol. 72, no. 10, p. 1326.

    Article  Google Scholar 

  24. Kacmarek, S.M., Chen, W., and Boulon, G., Cryst. Res. Technol., 2006, no. 1, p. 41.

    Article  Google Scholar 

  25. Chanturiya, V.A., Bunin, I.Zh., Ryazantseva, M.V., et al., Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2014, no. 3, p. 154.

    Google Scholar 

  26. Aleksenskii, A.E., Osipov, V.Yu., Vul’, A.Ya., Ber, B.Ya., Smirnov, A.B., Melekhin, V.G., Adriaenssens, G.J., and Iakoubovskii, K., Phys. Solid State, 2001, vol. 43, no. 1, p. 145.

    Article  ADS  Google Scholar 

  27. Lee, Y.S., Cho, TH., Lee, B.K., et al., J. Fluorine Chem., 2003, vol. 120, no. 2, p. 99.

    Article  Google Scholar 

  28. Dai, W., Ke, P., and Wang, A., Vacuum, 2011, vol. 85, no. 8, p. 792.

    Article  ADS  Google Scholar 

  29. Nefedov, V.I., Rentgenoelektronnaya spektroskopiya khimicheskikh soedinenii: spravochnik (X-Ray Electron Spectroscopy of Chemical Compounds. Handbook), Moscow: Khimiya, 1984.

    Google Scholar 

  30. Azevedo, A.F., Matsushima, J.T., and Vicentin, F.C., Appl. Surf. Sci., 2009, vol. 255, no. 13, p. 6565.

    Article  ADS  Google Scholar 

  31. Gardner, S.D., Singamsetty, C.S., and Booth, G.L., Carbon, 1995, vol. 33, no. 5, p. 587.

    Article  Google Scholar 

  32. Petrick, S. and Benndorf, C., Diamond Relat. Mater., 2001, vol. 10, no. 3, p. 519.

    Article  ADS  Google Scholar 

  33. Johnson, J.A., Holland, D., and Woodford, J.B., Diamond Relat. Mater., 2007, vol. 16, no. 2, p. 209.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zh. Bunin.

Additional information

Original Russian Text © I.Zh. Bunin, V.A. Chanturiya, M.V. Ryazantseva, N.E. Anashkina, E.V. Koporulina, 2016, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2016, Vol. 80, No. 6, pp. 712–717.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunin, I.Z., Chanturiya, V.A., Ryazantseva, M.V. et al. Changes in the functional chemical composition of the surfaces and microhardness of kimberlite minerals under the action of nanosecond high voltage pulses. Bull. Russ. Acad. Sci. Phys. 80, 645–649 (2016). https://doi.org/10.3103/S1062873816060083

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873816060083

Navigation