Skip to main content
Log in

Phase composition and structure of iron oxide nanopowders prepared by chemical means

  • Proceedings of the VIII International Conference “Phase Transitions and the Strength of Crystals”
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The phase composition and structure of iron oxide nanopowders obtained by different chemical means are explored via X-ray diffraction, transmission electron microscopy, and Mössbauer and X-ray photoelectron spectroscopy. It is shown that nanoparticles with sizes of 10–85 nm are nonstoichiometric magnetite–maggemite compounds. Particles with average sizes of ~10 nm are close in composition and structure to (γ-Fe2O3) maggemite, while those with sizes above 70 nm resemble (Fe3O4) magnetite. Estimates of the magnetite particle size yield a value of 130 nm, which may be considered the conditional boundary from the bulk state to nanoscale effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lukashova, N.V., Savchenko, A.G., Yagodkin, Yu.D., et al., Metalloved. Term. Obrab. Met., 2012, no. 10, p. 60.

    Google Scholar 

  2. Savchenko, A.G., Salikhov, S.V., Yurtov, E.V., et al., Bull. Russ. Acad. Sci.: Phys., 2013, vol. 77, no. 6, p. 704.

    Article  Google Scholar 

  3. Beaucage, G., Mark, J.E., Burns, G.T., et al., Nanostructured Powders and Their Industrial Application, Warrendale, PA: Mater. Res. Soc., 1998.

    Google Scholar 

  4. Lyubutin, I.S., Lin, C.R., Korzhetskiy, Yu.V., et al., J. Appl. Phys., 2009, vol. 106, no. 3, p. 034311.

    Article  ADS  Google Scholar 

  5. Perez, J.M., Josephson, L., O’Loughlint, T., et al., Nat. Biotechnol., 2002, vol. 20, p. 816.

    Article  Google Scholar 

  6. Weissleder, R., Bogdanov, A., Neuwelte, E., et al., Adv. Drug Delivery Rev., 1995, vol. 16, p. 321.

    Article  Google Scholar 

  7. Pershina, A.G., Sazonov, A.E., and Mil’to, I.V., Byull. Sib. Med., 2008, no. 2, p. 70.

    Google Scholar 

  8. Jurgons, R., Seliger, C., Hilpert, A., et al., J. Phys.: Condens. Matter., 2006, vol. 18, p. 2893.

    ADS  Google Scholar 

  9. Neilsen, O., Horsman, M., and Overgaard, J., Eur. J. Cancer, 2001, vol. 37, p. 1587.

    Article  Google Scholar 

  10. Tablitsy fizicheskikh velichin (Tables of Physical Quantities), Kikoin, I.K., Ed., Moscow: Atomizdat, 1976.

  11. Vervey, E.J.W., Nature, 1939, vol. 144, p. 327.

    Article  ADS  Google Scholar 

  12. Phase, D.M., Tiwari, S., Prakash, R., et al., J. Appl. Phys., 2006, vol. 100, p. 123703.

    Article  ADS  Google Scholar 

  13. Dorfman, Ya.G., Magnitnye svoistva i stroenie veshchestva (Matters Magnetic Properties and Structure), Moscow: Gostekhizdat, 1955.

    Google Scholar 

  14. Salazar-Alvarez, G., Synthesis, characterisation and applications of iron oxide nanoparticles, Doctoral Thesis, Stockholm, 2004.

    Google Scholar 

  15. Schwertmann, U. and Cornell, R.M., Iron Oxides in the Laboratory, Weinhem: VCH Verlagsgesellschaft, 1991.

    Google Scholar 

  16. Johnson, C.E., Costa, L., Gray, S., et al., Proc. 36th Annu. Condensed Matter and Materials Meeting, Wagga Wagga, 2012. p. FO01:1.

    Google Scholar 

  17. Elmore, W.C., Phys. Rev., 1938, vol. 54, p. 309.

    Article  ADS  Google Scholar 

  18. Massart, R., IEEE Trans. Magn., 1981, vol. 17, p. 1247.

    Article  ADS  Google Scholar 

  19. Shelekhov, E.V. and Sviridova, T.A., Metalloved. Term. Obrab. Met., 2000, no. 8, p. 16.

    Google Scholar 

  20. Kim, W., Suh, C.-Y., Cho, S.-W., Roh, K.-M., et al., Talanta, 2012, vol. 94, p. 348.

    Article  Google Scholar 

  21. Costa, G.M., Grave, E., Bakker, P.M., and Vandenberghe, R.E., Clays Clay Miner., 1995, vol. 43, no. 6, p. 656.

    Article  Google Scholar 

  22. Cannas, C., Concasa, G., Congiua, F., et al., Z. Naturforsch., A: Phys. Sci., 2002, vol. 57, p. 154.

    Article  ADS  Google Scholar 

  23. Suzdalev, I.P., Dinamicheskie effekty v gamma-rezonansnoi spektroskopii (Dynamical Effects in Gamma-Resonance Spectroscopy), Moscow: Atomizdat, 1979.

    Google Scholar 

  24. Yagodkin, Yu.D., Salikhov, S.V., and Ushakova, O.A., Zavod. Lab. Diagn. Mater., 2013, vol. 79, no. 4, p. 41.

    Google Scholar 

  25. Khimicheskie primeneniya messbauerovskoi spektroskopii (Chemical Applications of Mossbauer Spectroscopy), Gol’danskii, V.I., Krizhanovskii, L.I., and Khrapov, V.V., Eds., Moscow: Mir, 1970.

  26. Da Costa, G.M., Blanko-Andujar, C., De Grave, E., and Pankhurst, Q.A., J. Phys. Chem. B, 2014, vol. 118, p. 11738.

    Article  Google Scholar 

  27. Kamali, M.S., Ericsson, T. and Wappling, R., Characterization of Iron Oxide Nanoparticles by Mössbauer Spectroscopy, Uppsala: Uppsala Univ., 2010.

    Google Scholar 

  28. Yamachita, T. and Hayes, P., Appl. Surf. Sci., 2008, vol. 254, p. 2441.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Salikhov.

Additional information

Original Russian Text © S.V. Salikhov, A.G. Savchenko, I.S. Grebennikov, E.V. Yurtov, 2015, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2015, Vol. 79, No. 9, pp. 1251–1258.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salikhov, S.V., Savchenko, A.G., Grebennikov, I.S. et al. Phase composition and structure of iron oxide nanopowders prepared by chemical means. Bull. Russ. Acad. Sci. Phys. 79, 1106–1112 (2015). https://doi.org/10.3103/S1062873815090166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873815090166

Keywords

Navigation