Skip to main content
Log in

Comparative analysis of the amorphous phases obtained in Ti50Ni25Cu25 alloy using different approaches

  • Proceedings of the International Symposium “Physics of Crystals 2013”
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The structure of amorphous Ti50Ni25Cu25 alloy is investigated upon megaplastic deformation in a Bridgman chamber at room temperature. The dependences of average and local fractions of the crystalline phase along a sample’s radius on deformation are obtained. Radial distribution functions that allow calculation of the interatomic distances and coordinate numbers in several coordinate shells of investigated sample are found. It is concluded that the amorphous state in a Ti50Ni25Cu25 system fabricated by melt quenching is virtually the same as the one that arises through deformation-driven amorphization at room temperature in a Bridgman chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nosova, G.I. Shalimova, A.V., et al., Kristallografiya, 2009, vol. 54, no. 6, pp. 1111–11183.

    Google Scholar 

  2. Glezer, A.M., Sundeev, R.V., and Shalimova, A.V., Dokl. Akad. Nauk, 2011, vol. 440, no. 1, pp. 39–42.

    Google Scholar 

  3. Prokoshkin, S.D., Khmelevskaya, I.Yu., et al., Acta Mater., 2005, vol. 53, pp. 2703–2714.

    Article  Google Scholar 

  4. Pushin, V.G., Kuranova, N.N., et al., Fiz. Met. Metalloved., 2012, vol. 113, no. 3, pp. 286–298.

    Google Scholar 

  5. Zhilyaev, A.P. and Langdon, T.G., Prog. Mater. Sci., 2008, vol. 53, pp. 893–979.

    Article  Google Scholar 

  6. Moroz, E.M., Usp. Khim., 2011, vol. 80, no. 4, pp. 315–332.

    Article  Google Scholar 

  7. Veligzhanin, A.A., Zubavichus, Ya.V., et al., Vestn. Tomsk. Gos. Univ., 2013, vol. 18, no. 3, pp. 1709–1711.

    Google Scholar 

  8. Shelekhov, E.V. and Sviridova, T.A., Metalloved. Term. Obrab. Met., 2000, no. 8, pp. 16–22.

    Google Scholar 

  9. Visser, J.W., J. Appl. Crystallogr., 1975, vol. 8, pp. 1–7.

    Article  Google Scholar 

  10. Blank, V.D. and Estrin, E.I., Fazovye prevrashcheniya v tverdykh telakh pri vysokom davlenii (Phase Transitions in Solids under High Pressures), Moscow: Fizmatlit, 2011.

    Google Scholar 

  11. De Lima, J.C., Poffo, C.M., et al., Phys. B: Condens. Matter, 2013, vol. 424, pp. 60–68.

    Article  ADS  Google Scholar 

  12. Glezer, A.M., Permyakova, I.E., et al., Mekhanicheskoe povedenie amorfnykh splavov (Mechanical Behavior of Amorphous Alloys), Novokuznetsk: Siberian State Industrial Univ., 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shalimova.

Additional information

Original Russian Text © A.V. Shalimova, A.A. Veligzhanin, R.V. Sundeev, Ja.V. Zubavichus, A.M. Glezer, A.A. Chernyshov, 2014, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2014, Vol. 78, No. 11, pp. 1506–1512.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalimova, A.V., Veligzhanin, A.A., Sundeev, R.V. et al. Comparative analysis of the amorphous phases obtained in Ti50Ni25Cu25 alloy using different approaches. Bull. Russ. Acad. Sci. Phys. 78, 1232–1237 (2014). https://doi.org/10.3103/S1062873814110240

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873814110240

Keywords

Navigation