Skip to main content
Log in

Mathematical modelling radiation impact on nanostructures

  • Proceedings of the International Conference “Nucleus-2012”. “Fundamental Problems of Nuclear Physics, Atomic Power Engineering and Nuclear Technologies” (The 62nd International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei)
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The main methods for simulating the impact of radiation on nanostructures are considered. The quantum mechanical density functional method and the semi-empirical density functional tight-binding method are chosen on the basis of an analysis of their applicability to studying the formation of radiation defects in nanostructures in different ranges of space-time. The results from simulating vacancy formation in carbon and boron nitride nanostructures under the impact of H and O atoms with energies of 1–200 eV are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Novye naukoemkie tekhnologii v tekhnike. Entsiklopediya (New Science Intensive Technologies in Engineering. Encyclopedia), vol. 29: Perspektivy primeneniya nanotekhnologii i nanomaterialov pri sozdanii novykh obraztsov kosmicheskoi tekhniki dlya realizatsii masshtabnykh kosmicheskikh proektov pervoi poloviny XXI veka (Application Trends for Nanotechnologies and Nanomaterials for Creating New Samples of Space Engineering for Implementing Large-Scale Space Projects of the First Part of the 21th Century), Novikov, L.S. and Khmyrova, A.A., Eds., Moscow: Res. Inst. Energosber. Sist. Tekhnol., 2011.

    Google Scholar 

  2. Krasheninnikov, A.V. and Nordlund, K., J. Appl. Phys., 2010, vol. 107, p. 071301.

    Article  ADS  Google Scholar 

  3. Voronina, E.N., Novikov, L.S., and Chirskaya, N.P., Bull. Russ. Acad. Sci.: Phys., 2011, vol. 75, no. 11, p. 1500.

    Article  Google Scholar 

  4. Ion Beams in Nanoscience and Technology, Hellborg, R., Whitlow, H.J., and Zhang, Y., Berlin: Springer, 2009.

    Google Scholar 

  5. Atomic and Ion Collisions in Solids and at Surfaces: Theory, Simulation and Applications, Smith, R., Ed., New York: Cambridge Univ, Press, 2005.

    Google Scholar 

  6. www.srim.org/SRIM/SRIM2011.htm

  7. GEANT - Detector Description and Simulation Tool, Geneva, CERN, 1993.

  8. Lehtinen, O., Kotakoski, J., Krasheninnikov, A.V., et al., Phys. Rev. B, 2010, vol. 81, p. 153401.

    Article  ADS  Google Scholar 

  9. Handbook of Material Modeling, Yip, S., Ed., Berlin: Springer, 2005.

    Google Scholar 

  10. Saito, S., Takayama, A., Ito, A.M., Kenmotsu, T., and Nakamura, H., Progr. Nucl. Sci. Techn., 2011, vol. 2, p. 44.

    Google Scholar 

  11. Kotakoski, J., Krasheninnikov, A.V., and Nordlung, K., J. Comp. Theor. Nanosci., 2007, vol. 4, p. 1153.

    Google Scholar 

  12. Kotakoski, J., Jin, C.H., Lehtinen, O., Suenaga, K., and Krasheninnikov, A.V., Phys. Rev. B, 2010, vol. 82, p. 113404.

    Article  ADS  Google Scholar 

  13. Time-Dependent Density Functional Theory, Marques, M.A.L., Ullrich, C.A., Nogueira, F., et al., Eds., Berlin: Springer-Verlag, 2006.

    MATH  Google Scholar 

  14. Frauenheim, Th., et al., J. Phys.: Condens. Matter, 2002, vol. 14, p. 3015.

    Article  ADS  Google Scholar 

  15. Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., and Nieminen, R.M., Chem. Phys. Lett., 2006, vol. 418, p. 132.

    Article  ADS  Google Scholar 

  16. Krasheninnikov, A.V., Banhart, F., Li, J.X., et al., Phys. Rev. B, 2005, vol. 72, p. 125428.

    Article  ADS  Google Scholar 

  17. Holmström, E., Toikka, L., Krasheninnikov, A.V., and Nordlund, K., Phys. Rev. B, 2010, vol. 82, p. 045420.

    Article  ADS  Google Scholar 

  18. Krasheninnikov, A.V., Miyamoto, Y., and Tomanek, D., Phys. Rev. Lett., 2007, vol. 99, p. 016104.

    Article  ADS  Google Scholar 

  19. Björkman, T., Gulans, A., Krasheninnikov, A.V., and Nieminen, R.M., J. Phys.: Condens. Matter, 2012, vol. 24, p. 424218.

    Article  ADS  Google Scholar 

  20. http://accelrys.com/products/materials-studio/index.html

  21. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  ADS  Google Scholar 

  22. Monkhorst, H.J. and Pack, J.D., Phys. Rev. B, 1976, vol. 13, p. 5188.

    Article  MathSciNet  ADS  Google Scholar 

  23. Frenzel, J., Oliveira, A.F., Jardillier, N., et al., Semi-Relativistic, Self-Consistent Charge Slater-Koster Tables for Density-Functional Based Tight-Binding (DFTB) for Materials Science Simulations, TU-Dresden, 2004–2009.

    Google Scholar 

  24. Jin, Ch., Lin, F., Suenaga, K., and Iijima, S., Phys. Rev. Lett., 2009, vol. 102, p. 195505.

    Article  ADS  Google Scholar 

  25. Li, X.M., Tian, W.Q., and Huang, H.R., J. Nanopart. Res., 2009, vol. 11, p. 395.

    Article  Google Scholar 

  26. Shpilman, Z., Gouzman, I., Grossman, E., et al., J. Phys. Chem. C, 2010, vol. 114, p. 18996.

    Article  Google Scholar 

  27. Voronina, E.N., Novikov, L.S., Chernik, V.N., et al., Inorg. Mat.: Appl. Res., 2012, vol. 3, no. 2, p. 95.

    Article  Google Scholar 

  28. Zobelli, A., Gloter, A., Ewels, C.P., et al., Phys. Rev. B, 2007, vol. 75, p. 245402.

    Article  ADS  Google Scholar 

  29. Voevodin, Vl.V., Zhumatii, S.A., Sobolev, S.I., et al., Otkryt. Sist., 2012, no. 7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Voronina.

Additional information

Original Russian Text © E.N. Voronina, L.S. Novikov, 2013, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2013, Vol. 77, No. 7, pp. 897–903.

About this article

Cite this article

Voronina, E.N., Novikov, L.S. Mathematical modelling radiation impact on nanostructures. Bull. Russ. Acad. Sci. Phys. 77, 814–819 (2013). https://doi.org/10.3103/S1062873813070289

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873813070289

Keywords

Navigation