Skip to main content
Log in

Magnetostatic interaction effects in an ordering hexagonal array of ferromagnetic nanoparticles

  • Proceedings of the International Symposium “Nanophysics and Nanoelectronics”
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The results from investigating magnetostatic interaction effects in ordered hexagonal arrays of anisotropic single-domain ferromagnetic nanoparticles are presented. It is demonstrated theoretically and experimentally that two stable states (with quasi-uniform configurations of magnetic moments and with zero averaged magnetic moment configurations) can be easily attained in such arrays. It is shown that the structure of an ferromagnetic resonance spectrum depends strongly on the extent of magnetostatic interaction and the spatial configuration of the magnetic moments in the array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, R.F., Nisoli, C., Freitas, R.S., et al., Nature, 2006, vol. 439, pp. 303–306.

    Article  ADS  Google Scholar 

  2. Nisoli, C., Wang, R., Li, J., et al., Phys. Rev. Lett., 2007, vol. 98, pp. 217203 1–4.

    Article  ADS  Google Scholar 

  3. Westphalen, A., Schumann, A., Remhof, A., et al., Phys. Rev. B, 2008, vol. 77, pp. 174407 1–13.

    Article  ADS  Google Scholar 

  4. Mengotti, E. Heyderman, L.J., et al., Phys. Rev. B, 2008, vol. 78, pp. 144402 1–7.

    Article  ADS  Google Scholar 

  5. Schumann, A., Sothmann, B., Szary, P., and Zabel, H., Appl. Phys. Lett., 2010, vol. 97, pp. 022509 1–3.

    Article  Google Scholar 

  6. Mengotti, E., Heyderman, L.J., Bisig, A., et al., J. Appl. Phys., 2009, vol. 105, pp. 113113 1–4.

    Article  Google Scholar 

  7. Donahue, M.J. and Porter, D.G., “OOMMF User’s Guide”, Integragency Report NISTIR 6376, Gaithersburg: National Institute of Standards and Technology. http://math.nist.gov/oommf

  8. Murthy, V., Satya Narayana, Krishnamoorthi, C., Mahendiran, R., and Adeyeye, A.O., J. Appl. Phys., 2009, vol. 105, p. 023916.

    Article  ADS  Google Scholar 

  9. Mironov, V.L., Ermolaeva, O.L., Gusev, S.A., et al., Phys. Rev. B, 2010, vol. 81, pp. 094436 1–5.

    Article  ADS  Google Scholar 

  10. Gribkov, B.A., Mironov, V.L., Polushkin, N.I., and Shevtsov, V.B., Poverkhnost’, 2006, no. 5, pp. 19–21.

  11. Chang, J., Mironov, V.L., Gribkov, B.A., et al., J. Appl. Phys., 2006, vol. 100, pp. 104304-1–7.

    ADS  Google Scholar 

  12. Mironov, V.L., Fraerman, A.A., Gribkov, B.A., et al., Phys. Met. Metallogr., 2010, vol. 110, no. 7, pp. 708–734.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Mironov.

Additional information

Original Russian Text © V.L. Mironov, O.L. Ermolaeva, E.V. Skorokhodov, J.A. Blackman, 2013, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2013, Vol. 77, No. 1, pp. 37–40.

About this article

Cite this article

Mironov, V.L., Ermolaeva, O.L., Skorokhodov, E.V. et al. Magnetostatic interaction effects in an ordering hexagonal array of ferromagnetic nanoparticles. Bull. Russ. Acad. Sci. Phys. 77, 32–35 (2013). https://doi.org/10.3103/S1062873813010188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873813010188

Keywords

Navigation