Skip to main content
Log in

Superconducting Nb3Al by combustion synthesis: Structural characterization

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

We report on the synthesis of superconducting Nb3Al intermetallic with a critical temperature of 18 K. Nb–3Al powder compacts were used to fabricate Nb3Al intermetallic by Mechanically Activated SHS (MA-SHS) and Mechanically Activated ElectroThermal Explosion (MA-ETE). Phase composition of the obtained samples was characterized by XRD, SEM, optical microscopy, EDX, and atomic emission spectroscopy (AES).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bane, N., Takeuchi, T., Tsuchiya, K., and Nakagawa, K., Fabrication of long-length Nb3Al wire by the metastable solid-solution-strand restacking method, IEEE Trans. Appl. Supercond., 2011, vol. 21, no. 3, pp. 2517–2520. doi 10.1109/TASC.2010.2098833

    Article  Google Scholar 

  2. Akihama, R., Murphy, R.J., and Foner, S., Fabrication of multifilamentary Nb–Al by a powder metallurgy process, IEEE Trans. Magn., 1981, vol. 17, no. 1, pp. 274–277. doi 10.1109/TMAG.1981.1061138

    Article  Google Scholar 

  3. Ekin, J.W., Strain effects in superconducting compounds, Adv. Cryog. Eng. Mater., 1984, vol. 30, pp. 823–836.

    Google Scholar 

  4. Barmak, K., Coffer, K.R., Rudman, D.A., and Foner, S., Phase formation sequence for the reaction of multilayer thin films of Nb/Al, J. Appl. Phys., 1990, vol. 67, no. 12, pp. 7313–7322. doi org/10.1063/1.344517

    Article  Google Scholar 

  5. Hongen, M. and Morris, J.W., Direct solid-state precipitation- processed A15 (Nb3A1) superconducting material, Appl. Phys. Lett., 1980, vol. 37, no. 11, p. 1044. doi org/10.1063/1.91757

    Article  Google Scholar 

  6. Murayama, Y., Hanada, S., and Obara, K., Microstructures and mechanical properties of Nb3Al produced from Nb–Al alloy powder, Mater. Trans. JIM, 1993, vol. 34, no. 4, pp. 325–333.

    Article  Google Scholar 

  7. Bendjemil, B., Combustion synthesis and characterization of Cu–Nb3Sn superconducting monofilamentary composite wires, Int. J. Self-Propag. High-Temp. Synth., 2011, vol. 20, no. 4, pp. 229–235.

    Article  Google Scholar 

  8. Jorda, J., Flukiger, R., Junod, A., and Muller, J., Metallurgy and superconductivity in Nb–Al, IEEE Trans. Magn., 1981, vol. 17, no. 1, pp. 557–560. doi 10.1109/TMAG.1981.1061155

    Article  Google Scholar 

  9. Togano, K., Kumakura, H., Yoshida, Y., and Tachikawa, K., Fabrication of superconducting composite tapes by a newly developed liquid quenching technique, IEEE Trans. Magn., 1985,vol. 21, no. 2, pp. 463–466. doi 10.1109/TMAG.1985.1063830

    Article  Google Scholar 

  10. Watanabe, K., Noto, K., Morita, H., Fujimori, H., and Muto, Y., Nb3Al formation process in powder metallurgy processed wires and sputtered multilayer films, Magnetics, IEEE Trans. Magn., 1989, vol. 25, no. 2, pp. 1984–1987. doi 10.1109/20.92698

    Article  Google Scholar 

  11. Thieme, C.L.H., Pourrahimi, S., and Foner, S., Nb3Al wire produced by powder metallurgy and rapid quenching from high temperatures, IEEE Trans. Magn., 1989, vol. 25, no. 2, pp. 1992–1995. doi 10.1109/20.9269

    Article  Google Scholar 

  12. Thieme, C.L.H., Pourrahimi, S., Schwartz, B.B., and Foner, S., Nb–Al powder metallurgy processed multifilamentary wire, IEEE Trans. Magn., 1985, vol. 21, no. 2, pp. 756–759. doi 10.1109/TMAG.1985.1063774

    Article  Google Scholar 

  13. Thieme, C.L.H., Zhang, H., Otubo, J., Pourrahimi, S., Schwartz, B.B., and Foner, S., Scale-up of powder metallurgy processed Nb–Al multifilamentary wire, IEEE Trans. Magn., 1983, vol. 19, no. 3, pp. 567–569. doi 10.1109/TMAG.1983.1062505

    Article  Google Scholar 

  14. Tatsumi, N., Fukuzaki, T., Banno, N., Takeuchi, T., Wada, H., Tagawa, K., and Iwaki, G., Fabrication of jelly-roll Nb3Al superconductors by using Al-alloy sheets, IEEE Trans. Appl. Supercond., 2002, vol. 12, no. 1, pp. 1094–1097. doi 10.1109/TASC.2002.1018591

    Article  Google Scholar 

  15. Inoue, K., Iijima, Y., Takeuchi, T., New superconducting Nb3Al MFwire made by Nb/Al–Mg composite process, Cryogenics, 1989, vol. 29, no. 4, pp. 418–422. doi 10.1016/0011-2275(89)90272-5

    Article  Google Scholar 

  16. Saito, S., Sugawara, H., Kikuchi, A., Iijima, Y., and Inoue, K., Superconducting properties of Nb3Al wire fabricated by the clad-chip extrusion method and the rapid-heating, quenching and transformation treatment, Physica C: Supercond., 2002, vol. 372–376, no. 3, pp. 1373–1377. doi 10.1016/S0921-4534(02)01034-1

    Google Scholar 

  17. Takeuchi, T., Nb3Al conductors-rapid-heating, quenching and transformation process, IEEE Trans. Appl. Superconduct., 2000, vol.1, no.1, pp. 1016–1021. doi 10.1109/77.828404

    Article  Google Scholar 

  18. Fukuda, K., Iwaki, G., Hosono, F., Sakai, S., Iijima, Y., Takeuchi, T., Inoue, K., Kobayashi, N., Watanabe, K., and Awaji, S., Some superconducting characteristics of Nb3Al composite wires prepared by rapid-quenching process, IEEE Trans. Appl. Superconduct., 1997, vol. 7, no. 2, pp. 1572–1575. doi 10.1109/77.620875

    Article  Google Scholar 

  19. Takeuchi, T., Tagawa, K., Kiyoshi, T., Itoh, K., Kosuge, M., Yuma, M., Wada, H., Iijima, Y., Inoue, K., Nakagawa, K., Iwaki, G., and Morae, H., Enhanced current capacity of jelly-roll processed and transformed Nb3Al multifilamentary conductors, IEEE Trans. Appl. Superconduct., 1999, vol. 9, no. 2, pp. 2682–2687. doi 10.1109/77.785039

    Article  Google Scholar 

  20. Benaldjia, A., Guellati, O., Bounour, W., Guerioune, M., Ali-Rachedi, M., Amara, A., Drici, A., and Vrel, D., Titanium carbide by the SHS process ignited with aluminothermic reaction, Int. J. Self-Propag. High-Temp. Synth., 2008, vol. 17, no. 1, pp. 54–57.

    Article  Google Scholar 

  21. Lijima, Y., Kosuge, M., Takeuchi, Y., Inoue, K., and Watanabe, K., Nb3Al multifilamentary wires continuously fabricated by rapid-quenching, Adv. Cryog. Eng. Mater., 1994, vol. 40, pt. A, pp. 899–905. doi 10.1007/978-1-4757-9053-5-115

    Google Scholar 

  22. Gauthier, V., Bernard, F., Gaffet, E., Vrel, D., Gailhanou, M., and Larpin, J.P., Investigations of the formation mechanism of nanostructured NbAl3 via MASHS reaction, Intermetallics, 2002, vol. 11, pp. 377–389. doi 10.1016/S0966-9795(02)00010-9

    Article  Google Scholar 

  23. Guerioune, M., Amiour, Y., Bounour, W., Guellati, O., Benaldjia, A., Amara, A., Chakri, N.E., Ali-Rachedi, M., and Vrel., D., SHS of shape memory CuZnAl alloys, Int. J. Self-Propag. High-Temp. Synth., 2008, vol. 17, no. 1, pp. 41–48.

    Article  Google Scholar 

  24. Bendjemil, B., SHS-produced Ni–Mn–Al magnetic shape memory alloy, Int. J. Self-Propag. High-Temp. Synth., 2010, vol. 19, no. 2, pp. 110–113.

    Article  Google Scholar 

  25. Qi, M., Feng, P.X., Zhang, P.X., Cui, L.J., Li, C.S., Yan, G., Chen, Y.L., and Zhao, Y., Fabrication of Nb3Al superconducting bulks by mechanical alloying Method., Physica C: Superconduct., 2014, vol. 501, no. 15, pp. 39–43. doi 10.1016/j.physc.2014.03.017

    Article  Google Scholar 

  26. Pan, X.F., Yan, G., Qi, M., Cui, L.J., Chen, Y.L., Zhao, Y., Li, C.S., Liu, X.H., Feng, Y., Zhang, P.X., Liu, H.J., and Li, L.F., Fabrication of Nb3Al superconducting wires by utilizing the mechanically alloyed Nb(Al)ss supersaturated solid-solution with low-temperature annealing, Physica C: Superconduct., 2014, vol. 502, no. 15, pp. 14–19. doi 10.1016/j.physc.2014.04.002

    Article  Google Scholar 

  27. Takeuchi, T., Nb3Al conductors for high-field applications, Supercond. Sci. Technol., 2000, vol. 13, no. 9, pp. R101–R109. doi org/10.1088/0953-2048/13/9/201

    Article  Google Scholar 

  28. Jin, X., Nakamoto, T., Harjo, S., Ito, T., Ogitsu, T., Tsuchiya, K., Yamamoto, A., Kikuchi, A., Takeuchi, T., and Hemmi, S., Observation of A15 phase transformation in RHQ–Nb3Al wire by neutron diffraction at high-temperature, J. Alloys Comp., 2012, vol. 535, pp. 124–128. doi org/10.1016/j.jallcom.2012.04.070

  29. Schulze, K., Miller, G., and Petzow, G., Preparation of ductile Nb–Al powders for the fabrication of Nb3Al superconductors, J. Less-Common Met., 1988, vol. 139, no. 1, pp. 97–106. doi org/10.1016/0022- 5088(88)90333-5

    Article  Google Scholar 

  30. Kikuchi, A., Iijima, Y., and Inoue, K., Microstructures of rapidly-heated/quenched and transformed Nb3Al multifilamentary superconducting wires, IEEE Trans. Appl. Superconduct., 2001, vol. 11, no. 1, pp. 3615–3618. doi 10.1109/77.919847

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hafs.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafs, A., Benaldjia, A. & Hafs, T. Superconducting Nb3Al by combustion synthesis: Structural characterization. Int. J Self-Propag. High-Temp. Synth. 25, 159–165 (2016). https://doi.org/10.3103/S106138621603002X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106138621603002X

Keywords

Navigation