Skip to main content
Log in

Protective Mo2NiB2–Ni coatings by centrifugal metallothermic SHS

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Cast Mo2NiB2–Ni metal-matrix composites and protective coatings thereof were fabricated by centrifugal metallothermic SHS process. The quality of SHS surfacing was found to depend on process parameters such as the mass of green mixture per unit surface area of substrate and centrifugal acceleration. The hardness of synthesized coatings was rather high and attained as large values as 800–1200 H V. Optimal conditions for deposition of high-quality protective coatings onto a steel substrate were found experimentally. The process can be recommended for practical implementation in production of cutting tools, tribological materials, molds, and deposition of protective coatings. The present results can be expected to make a theoretical background for industrial-scale manufacturing of new tungsten-free MMCs and protective coatings with valued service parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong, R.W., The hardness and strength properties of WC–Co composites, Materials, 2011, vol. 4, no. 7, pp. 1287–1308.

    Article  Google Scholar 

  2. Ravichandran, K.S., Fracture toughness of two-phase WC–Co cermets, Acta Metall. Mater., 1994, vol. 42, no. 1, pp. 143–150.

    Article  Google Scholar 

  3. Novikov, N.V., Bondarenko, V.P., and Golovchan, V.T., High-temperature mechanical properties of WC–Co hard metals: Review, J. Superhard Mater., 2007, vol. 29, no. 5, pp. 261–280.

    Article  Google Scholar 

  4. Sarin, V.K., Cemented carbide cutting tools, in Advances in Powder Technology, Chin, D.Y., Ed., Louisville, KY: ASM Materials Science, 1981, pp. 253–287.

    Google Scholar 

  5. Munro, R.G., Material properties of titanium diboride. J. Res. Natl. Inst. Stand. Technol., 2000, vol. 105, no. 5, pp. 709–720.

    Article  Google Scholar 

  6. Königshofer, R., Furnsinn, S., Steinkellner, P., Lengauer, W., Haas, R., Rabitsch, K., and Scheerer, M., Solid-state properties of hot-pressed TiB2 ceramics, Int. J. Refract. Met. Hard Mater., 2005, vol. 23, nos. 4–6, pp. 350–357.

    Article  Google Scholar 

  7. Vajeeston, P., Ravindran, P., Ravi, C., and Asokamani, R., Electronic structure, bonding, and groundstate properties of AlB2-type transition-metal diborides, Phys. Rev., Ser. B, 2001, vol. 63, p. 045115.

    Article  Google Scholar 

  8. Telle, R., Fender, E., and Petzov, G., The quasi-binary systems CrB2–TiB2, CrB2–WB2, and TiB2–WB2, J. Hard Mater., 1992, vol. 3, pp. 211–224.

    Google Scholar 

  9. Telle, R., Sigl, L.S., and Takagi, K., in Handbook of Ceramic Hard Materials, Riedel, R., Ed., Weinheim: Wiley–VCH, 2000, vol. 1, pp. 802–945.

    Article  Google Scholar 

  10. Pastor, H., Preparation of solid bodies: Sintering methods and properties of solid bodies, in Boron and Refractory Borides, Matkovich, V.I., Ed., Berlin–Heidelberg–New York: Springer, 1977, pp. 457–458.

    Chapter  Google Scholar 

  11. Samsonov, G.V., Serebryakova, T.I., and Neronov, V.A., Boridy (Borides), Moscow: Atomizdat, 1975.

    Google Scholar 

  12. Takagi, K., Yamasaki, Y., and Komai, M., Highstrength boride based hard materials, J. Solid State Chem., 1997, vol. 133, no. 1, pp. 243–248.

    Article  Google Scholar 

  13. Takagi, K. and Yamasaki, Y., Effects of Mo/B atomic ratio on the mechanical properties and structure of Mo2NiB2 boride base cermets with Cr and V additions, J. Solid State Chem., 2000, vol. 154, no. 1, pp. 263–268.

    Article  Google Scholar 

  14. Takagi, K., Development and application of high strength ternary boride base cermets, J. Solid State Chem., 2006, vol. 179, no. 9, pp. 2809–2818.

    Article  Google Scholar 

  15. Yamasaki, Y., Nishi, M., and Takagi, K., Development of very high strength Mo2NiB2 complex boride based hard alloy, J. Solid State Chem., 2004, vol. 177, no. 2, pp. 551–555.

    Article  Google Scholar 

  16. Yu, H., Zheng, Y., Liu, W., Zheng, J., and Xiong, W., Effect of V content on the microstructure and mechanical properties of Mo2FeB2 based cermets, Mater. Design, 2010, vol. 31, no. 5, pp. 2680–2683.

    Article  Google Scholar 

  17. Yu, H.Z., Liu, W.J., and Zheng, Y., Microstructure and mechanical properties of liquid phase sintered Mo2FeB2 based cermets, Mater. Design, 2011, vol. 32, no. 6, pp. 3521–3525.

    Article  Google Scholar 

  18. Yukhvid, V.I., Modifications of SHS processes, Pure Appl. Chem., 1992, vol. 64, no. 7, pp. 977–988.

    Article  Google Scholar 

  19. Sanin, V., Andreev, D., Ikornikov, D., and Yukhvid, V., Cast intermetallic alloys by SHS under high gravity, Acta Phys. Polon., Ser. A, 2011, vol. 120, no. 2, pp. 331–335.

    Google Scholar 

  20. Sanin, V., Andreev, D., Ikornikov, D., and Yukhvid, V., Cast intermetallic alloys and composites based on them by combined centrifugal casting–SHS process, Open J. Met., 2013, vol. 3, pp. 12–24.

    Article  Google Scholar 

  21. Yukhvid, V.I., Sanin, V.N., and Merzhanov, A.G., The influence of high artificial gravity on SHS processes, Processing by Centrifugation, Regel, L.L. and Wilcox, W.R., Eds., Amsterdam: Kluwer Academic, 2001, pp. 185–200.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Sanin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanin, V.N., Ikornikov, D.M., Andreev, D.E. et al. Protective Mo2NiB2–Ni coatings by centrifugal metallothermic SHS. Int. J Self-Propag. High-Temp. Synth. 24, 161–170 (2015). https://doi.org/10.3103/S1061386215030097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386215030097

Keywords

Navigation