Skip to main content
Log in

Nonparametric modeling of oxygen-converter processes

  • Published:
Steel in Translation Aims and scope

Abstract

Preliminary data analysis in the identification of multidimensional discrete–continuous processes is considered. A method is proposed for generating a working sample from an initial training sample consisting of normal operating data. The method somewhat resembles the bootstrap process. In the present case, the process begins with a training sample that reflects the properties of the object to be identified. By means of the proposed method, the unknown stochastic dependence at the limit of definition of the corresponding input–output variables for the object may be automatically derived. The identification of the oxygen-converter process in converter shop 2 at OAO EVRAZ ZSMK is considered in the case with insufficient available information and gaps in the observation sample. The model is based on a new working sample containing both the measurements and data generated by the proposed method. By using the working sample as a training sample, the precision of identification is doubled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emel’yanov, S.V., Korovin, S.K., Rykov, A.S, et al., Metody identifikatsii promyshlennykh ob”ektov v sistemakh upravleniya (Identification Methods of Industrial Objects in the Control Systems), Kemerovo: Kuzbassvuzizdat, 2007.

    Google Scholar 

  2. Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya. Tom 2. Statisticheskaya dinamika i identifikatsiya sistem avtomaticheskogo upravleniya (Methods of Classical and Modern Control Theory, Vol. 2: Statistical Dynamics and Identification of Automatic Control Systems), Pupkov, K.A. and Egupov, N.D., Eds., Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2004.

  3. Medvedev, A.V., Osnovy teorii adaptivnykh sistem (Fundamental Theory of Adaptive Systems), Krasnoyarsk: Sib. Gos. Aerokosm. Univ., 2015.

    Google Scholar 

  4. Boiko V.I. and Smolyak V.A. Avtomatizirovannye sistemy upravleniya tekhnologicheskimi protsessami v chernoi metallurgii: uchebnoe posobie (Automated Control Systems of Technological Processes in the Steel Industry: Manual), Dneprodzerzhinsk: Dnepropetrovsk. Gos. Tekh. Univ., 1997.

    Google Scholar 

  5. Bannikova, A.V., Korneeva, A.A., Kornet, M.E., and Sergeeva, N.A., Nonparametric stochastic object control with memory, Vestn. Sib. Gos. Aerokosm. Univ., 2014, vol. 55, no. 3, pp. 28–34.

    Google Scholar 

  6. Nadaraya, E.A., Neparametricheskoe otsenivanie plotnosti veroyanostei i krivoi regressii (Non-Parametric Estimation of Probability Density and Regression Curve), Tbilisi: Tbilissk. Gos. Univ., 1983.

    Google Scholar 

  7. Lapko, A.V. and Chentsov, S.V., Neparametricheskie sistemy obrabotki informatsii (Nonparametric Data Processing Systems), Moscow: Nauka, 2000.

    Google Scholar 

  8. Epanechnikov, V.A., Non-parametric estimation of a multidimensional density of probability, Teor. Veroyatn. Ee Primen., 1969, vol. 14, no. 1, pp. 156–161.

    Google Scholar 

  9. Ruban, A.I., Metody analiza dannykh: uchebnoe posobie (Manual on Data Analysis), Krasnoyarsk: Krasnoyarsk. Gos. Tekh. Univ., 2004.

    Google Scholar 

  10. Zagoruiko, N.G., Prikladnye metody analiza dannykh i znanii (Applied Data and Knowledge Analysis), Novosibirsk: Inst. Matem., Sib. Otd., Ross. Akad. Nauk, 1999.

    Google Scholar 

  11. Chzhan, E.A., The generation of the sample in the identification of non-inertia processes, Vestn. Sib. Gos. Aerokosm. Univ., 2015, vol. 16, no. 2, pp. 368–375.

    Google Scholar 

  12. Orlov, A.I., Computer statistical methods: state and prospects, Nauch. Zh. Kuban. Gos. Agrar. Univ., 2014, no. 103 (9), pp. 1–33.

    Google Scholar 

  13. García Soidán, P., Menezes, R., and Rubiños, Ó., Bootstrap approaches for spatial data, Stoch. Environ. Res. Risk Assess., 2014, vol. 28, pp. 1207–1219.

    Article  Google Scholar 

  14. Ji, M.L. and Stein, M.L., Spatial bootstrap with increasing observations in a fixed domain, Stat. Sin., 2008, vol. 18, pp. 667–688.

    Google Scholar 

  15. Kunsch, H.R., The jackknife and the bootstrap for general stationary observations, Ann. Stat., 2008, vol. 17, pp. 1217–1241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Medvedev.

Additional information

Original Russian Text © A.V. Medvedev, M.E. Kornet, E.A. Chzhan, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2016, No. 12, pp. 910–915.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, A.V., Kornet, M.E. & Chzhan, E.A. Nonparametric modeling of oxygen-converter processes. Steel Transl. 46, 855–859 (2016). https://doi.org/10.3103/S0967091216120068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091216120068

Keywords

Navigation