Skip to main content
Log in

The application of pulsed field gel electrophoresis for molecular typing of causative agents of especially dangerous infections

  • Reviews
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

DNA macrorestriction analysis of microorganisms with the use of pulsed field gel electrophoresis (PFGE typing, pulse electrophoresis) is used in molecular biology for the study of clonal structure and the typing of the causative agents of infectious diseases. The comparison of DNA restriction patterns is used to determine the degree of relationship, find the epidemiological correlations between studied isolates, and examine the evolutionary history of pathogens. The present review presents an analysis of the use of pulse electrophoresis in molecular epidemiological research and the study of phylogeny of especially dangerous infections such as cholera and plague. The possibility of characterizing the genetic heterogeneity of the Vibrio cholerae and Yersinia pestis populations and the territorial and epidemiological features of the spread of isolates of various pulsotypes is shown. The problems and prospects of the PFGE typing method for the system of epidemiological surveillance of cholera and plague in Russian Federation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Herschleb, J., Ananiev, G., and Schwartz, D.S., Pulsed-field gel electrophoresis, Nat. Prot., 2007, Vol. 2, No. 3, pp. 677–684.

    Article  CAS  Google Scholar 

  2. Nasonova, E.S., Pulse field gel electrophoresis: theory, instrument, and application, Tsitologiia, 2008, Vol. 50, No. 11, pp. 927–935.

    CAS  PubMed  Google Scholar 

  3. Schwartz, D.C., Saffran, W., Welsh, J., Haas, R., Goldenberg, M., and Cantor, C.R., New techniques for purifying large DNAs and studying their properties and packaging, Cold Spring Harbor Symp. Quant. Biol., 1982, Vol. 47, pp. 189–195.

    Article  CAS  Google Scholar 

  4. Schwartz, D.C. and Cantor, C.R., Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis, Cell, 1984, Vol. 37, pp. 67–75.

    Article  CAS  PubMed  Google Scholar 

  5. Beadle, J., Wright, M., McNeely, L., and Bennett, J.W., Electrophoretic karyotype analysis in fungi, Adv. Appl. Microbiol., 2003, Vol. 53, pp. 243–270.

    Article  CAS  PubMed  Google Scholar 

  6. Wieloch, W., Chromosome visualisation in filamentous fungi, J. Microb. Methods, 2006, Vol. 67, No. 1, pp. 1–8.

    Article  CAS  Google Scholar 

  7. El-Osta, Y.G., Hillier, A.J., and Dobos, M., Construction of a combined physical and genetic map of the chromosome of Lactobacillus acidophilus ATCC 4356 and characterization of the rRNA operons, Microbiology, 2005, Vol. 151, No. 3, pp. 875–992.

    Article  PubMed  Google Scholar 

  8. Gemmill, R.M., Bolin, R., Albertsen, H., Tomkins, J.P., and Wing, R.A., Pulsed-field gel electrophoresis for long-range restriction mapping, Curr. Protoc. Hum. Genet., 2002, Vol. 5, No. 5. 1.

    PubMed  Google Scholar 

  9. Suga, H., Ikeda, S., Taga, M., Kageyama, K., and Hyakumachi, M., Electrophoretic karyotyping and gene mapping of seven formaespeciales in Fusarium solani, Curr. Genet., 2002, Vol. 41, No. 4, pp. 254–260.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, H.B. and Wing, R.A., Physical mapping of the rice genome with BACs, Plant Mol. Biol., 1997, Vol. 35, nos. 1–2, pp. 115–127.

    Article  CAS  PubMed  Google Scholar 

  11. Sidorenko, A.V., Novik, G.I., and Akimov, V.N., Application of molecular methods to classification and identification of bacteria of the genus Bifidobacterium, Mikrobiologiya, 2008, Vol. 7, No. 3, pp. 293–302.

    Google Scholar 

  12. Goering, R.V., Pulsed field gel electrophoresis: A review of application and interpretation in the molecular epidemiology of infectious disease, Infect. Gen. Evol., 2010, Vol. 10, pp. 866–875.

    Article  CAS  Google Scholar 

  13. van Belkum, A., Tassios, P.T., Dijkshoorn, L., Haeggman, S., Cookson, B., Fry, N.K., et al., European society of clinical microbiology and infectious diseases (ESCMID) study group on epidemiological markers (ESGEM). Guidelines for the validation and application of typing methods for use in bacterial epidemiology, Clin. Microbiol. Infect., 2007, Vol. 13, No. 3, pp. 1–46.

    Article  CAS  PubMed  Google Scholar 

  14. Chu, G. and Gunderson, K., Separation of large DNA by a variable-angle contour-clamped homogeneous electric field apparatus, Anal. Biochem., 1991, Vol. 194, pp. 439–516.

    Article  CAS  PubMed  Google Scholar 

  15. The International Molecular Subtyping Network for Foodborne Disease Surveillance. Available at: http://www.pulsenetinternational.org (accessed December 15, 2012).

  16. Tenover, F.C., Arbeit, R.D., Goering, R.V., Mickelsen, P.A., Murray, B.E., Persing, D.H., and Swaminathan, B., Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing, J. Clin. Microbiol., 1995, Vol. 33, No. 9, pp. 2233–2239.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Barrett, T.J., Gerner-Smidt, P., and Swaminathan, B., Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance, Foodborne Pathog. Dis., 2006, Vol. 3, No. 1, pp. 20–31.

    Article  CAS  PubMed  Google Scholar 

  18. Bosch, T., de Neeling, A.J., Schouls, L.M., van der Zwaluw, K.W., Kluytmans, J.A., Grundmann, H., and Huijsdens, X.W., PFGE diversity within the methicillin-resistant Staphylococcus aureus clonal lineage ST398, BMC Microbiol., 2010, Vol. 10, No. 40. doi: 10.1186/1471–2180-10–40

    Google Scholar 

  19. Singh, A., Goering, R.V., Simjee, S., Foley, S.L., and Zervos, M.J., Application of molecular techniques to the study of hospital infection, Clin. Microb. Rev., 2006, Vol. 19, No. 3, pp. 512–530.

    Article  CAS  Google Scholar 

  20. Lukinmaa, S., Nakari, U.M., Eklund, M., and Siitonen, A., Application of molecular genetic methods in diagnostics and epidemiology of foodborne bacterial pathogens, APMIS, 2004, Vol. 112, nos. 11–12, pp. 908–929.

    Article  CAS  PubMed  Google Scholar 

  21. Cameron, D.N., Khambaty, F.M., Wachsmuth, I.K., Tauxe, R.V., and Barrett, T.J., Molecular characterization of Vibrio cholerae O1 strains by pulsed-field gel electrophoresis, J. Clin. Microbiol., 1994, Vol. 32, No. 7, pp. 1685–1690.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Mahalingam, S., Cheong, Y.M., Kan, S., Yassin, R.M., Vadivelu, J., and Pang, T., Molecular epidemiologic analysis of Vibrio cholerae O1 isolates by pulsed-field gel electrophoresis, J. Clin. Microbiol., 1994, Vol. 32, No. 12, pp. 2975–2979.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Dalsgaard, A., Skov, M.N., Serichantalergs, O., and Echeverria, P., Comparison of pulsed-field gel electrophoresis and ribotyping for subtyping of Vibrio cholerae O139 isolated in Thailand, Epidemiol. Infect., 1996, Vol. 117, pp. 51–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Dalsgaard, A., Skov, M.N., Serichantalergs, O., Echeverria, P., Meza, R., and Taylor, D.N., Molecular evolution of Vibrio cholera O1 strains isolated in Lima, Peru, from 1991 to 1995, J. Clin. Microbiol., 1997, Vol. 35, No. 5, pp. 1151–1156.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Evins, G.M., Cameron, D.N., Wells, J.G., Greene, K.D., Popovic, T., Giono-Cerezo, S., et al., The emerging diversity of the electrophoretic types of Vibrio cholerae in the Western Hemisphere, J. Infect. Dis., 1995, Vol. 172, No. 1, pp. 173–179.

    Article  CAS  PubMed  Google Scholar 

  26. Albert, M.J., Bhuiyan, N.A., Talukder, K.A., Faruque, A.S., Nahar, S., Faruque, S.M., et al., Phenotypic and genotypic changes in Vibrio cholerae 0139 Bengal, J. Clin. Microbiol., 1997, Vol. 35, No. 10, pp. 2588–2592.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Bag, P.K., Maiti, S., Sharma, C., Ghosh, A., Basu, A., Mitra, R., et al., Rapid spread of the new clone of Vibrio cholerae O1 biotype El Tor in cholera endemic areas in India, Epidemiol. Infect., 1999, Vol. 121, No. 2, pp. 245–251.

    Article  Google Scholar 

  28. Kam, K.M., Luey, C.K., Tsang, Y.M., Law, C.P., Chu, M.Y., Cheung, T.L., and Chiu, A.W., Molecular subtyping of Vibrio cholerae O1 and O139 by pulsedfield gel electrophoresis in Hong Kong: Correlation with epidemiological events from 1994 to 2000, J. Clin. Microbiol., 2003, Vol. 41, No. 10, pp. 4502–4511.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Rapid standard laboratory protocol for molecular subtyping of Vibrio cholerae by Pulse-Field Gel Electrophoresis (PFGE). The National Molecular Subtyping Network for Foodborne Disease Surveillance. CDC, Pulsenet USA, 2006.

  30. Cooper, K.L., Luey, C.K., Bird, M., Terajima, J., Nair, G.B., Kam, K.M., et al., Development and validation of a pulsenet standardized pulsed-field gel electrophoresis protocol for subtyping of Vibrio cholerae, Foodborne Pathog. Dis., 2006, Vol. 3, No. 1, pp. 51–58.

    Article  CAS  PubMed  Google Scholar 

  31. Standard Operating Procedure for PFGE of Vibrio cholerae and Vibrio parahaemolyticus. International Molecular Subtyping Network for Foodborne Disease Surveillance. Pulsenet International. 2013. Available at: http://www.pulsenetinternational.org/assets/PulseNet/uploads/pfge/PNL06_Vchol-VparahPFGEprotocol.pdf (accessed January 22, 2013).

  32. Chin, C.S., Sorenson, J., Harris, J.B., Robins, W.P., Charles, R.C., Jean- Charles, R.R., et al., The origin of the Haitian cholera outbreak strain, N. Engl. J. Med., 2011, Vol. 364, pp. 33–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Morbidity and Mortality Weekly Report, CDC, 2010, Vol. 59, No. 45, pp. 174–179. Available at http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5945al. htm?s_cid=mm5945al_w (accessed January 22, 2013).

    Google Scholar 

  34. Gilmour, M.W., Martel-Laferriere, V., Levesque, S., Gaudreau, C., Bekal, S., Nadon, C., and Bourgault, A.M., Vibrio cholerae in traveler from Haiti to Canada, Emerg. Infect. Dis., 2011, Vol. 17, No. 6, pp. 1124–1125.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Talkington, D., Bopp, C., Tarr, C., Parsons, M.B., Dahourou, G., Freeman, M., et al., Characterization of toxigenic Vibrio cholerae from Haiti, 2010–2011, Emerg. Infect. Dis., 2011, Vol. 17, No. 11, pp. 2122–2129.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Keddy, K.H., Nadan, S., Govind, C., and Sturm, A.W., Evidence for a clonally different origin of the two cholera epidemics of 2001–2002 and 1980–1987 in South Africa, J. Med. Microbiol., 2007, Vol. 56, No. 12, pp. 1644–1650.

    Article  CAS  PubMed  Google Scholar 

  37. Ismail, H., Smith, A.M., Archer, B.N., Tau, N.P., Sooka, A., Thomas, J., et al., Group for enteric, respiratory and meningeal disease surveillance in South Africa (GERMS-SA). Case of imported Vibrio cholerae O1 from India to South Africa, J. Infect. Dev. Ctries, 2012, Vol. 6, No. 12, pp. 897–900.

    Article  PubMed  Google Scholar 

  38. Naha, A., Chowdhury, G., Ghosh-Banerjee, J., Senoh, M., Takahashi, T., Ley, B., et al., Molecular characterization of high-level-cholera-toxin-producing El Tor variant Vibrio cholerae strains in the Zanzibar archipelago of Tanzania, J. Clin. Microbiol., 2013, Vol. 51, No. 3, pp. 1040–1045.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rashed, S.M., Mannan, S.B., Johura, F.T., Islam, M.T., Sadique, A., Watanabe, H., et al., Genetic characteristics of drug-resistant Vibrio cholerae o1 causing endemic cholera in Dhaka, 2006–2011, J. Med. Microb, 2012, Vol. 61, pp. 1736–1815.

    Article  Google Scholar 

  40. Rashed, S.M., Iqbal, A., Mannan, S.B., Islam, T., Rashid, M.U., Johura, F.T., et al., Vibrio cholerae O1 El Tor and O139 Bengal strains carrying ctxBET, Bangladesh, Emerg. Infect. Dis., 2013, Vol. 19, No. 10, pp. 1713–1715.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Lucier, T.S. and Brubaker, R.R., Determination of genome size, macrorestriction pattern polymorphism, and nonpigmentation-specific deletion in Yersina pestis by pulsed-field gel electrophoresis, J. Bacteriol., 1992, Vol. 174, pp. 2078–2086.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Rakin, A. and Heesemann, J., The established Yersinia pestis biovars are characterized by typical patterns of I-CeuI restriction fragment length polymorphism, Mol. Genet. Mikrobiol. Virusol., 1995, Vol. 3, pp. 26–29.

    Google Scholar 

  43. Rajanna, C., Revazishvili, T., Rashid, M.H., Chubinidze, S., Bakanidze, L., Tsanava, S., et al., Characterization of pPCP1 plasmids in Yersinia pestis strains isolated from the former Soviet Union, Int. J. Microb., 2010, Vol. 2010, No. 760819, p. 9.

    Google Scholar 

  44. Guiyoule, A., Rasoamanana, B., Buchrieser, C., Michel, P., Chanteau, S., and Carniel, E., Recent emergence of new variants of Yersinia pestis in Madagascar, J. Clin. Microbiol., 1997, Vol. 35, pp. 2826–2833.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Huang, X.-Z., Chu, M.C., Engelthaler, D.M., and Lindler, L.E., Genotyping of a homogeneous group of Yersinia pestis strains isolated in the united states, J. Clin. Microbiol., 2002, Vol. 40, pp. 1164–1173.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Revazishvili, T., Rajanna, C., Bakanidze, L., Tsertsvadze, N., Imnadze, P., and O’Connell, K., Characterisation of Yersinia pestis isolates from natural foci of plague in the republic of Georgia, and their relationship to Y. pestis isolates from other countries, Clin. Microb. Infect., 2008, Vol. 14, pp. 429–436.

    Article  CAS  Google Scholar 

  47. Zhang, Z., Hai, R., Song, Z., Xia, L., Liang, Y., Cai, H., et al., Spatial variation of Yersinia pestis from Yunnan province of China, Am. J. Trop. Med. Hyg., 2009, Vol. 81, No. 4, pp. 714–717.

    Article  PubMed  Google Scholar 

  48. Barros, M.P.S., Almeida, A.M.P., Silveira-Filho, V.M., and Leal-Balbino, T.C., Subtyping Brazilian Yersinia pestis strains by pulsed-field gel electrophoresis, Genet. Mol. Res., 2013, Vol. 12, No. 2, pp. 1294–1302.

    Article  CAS  PubMed  Google Scholar 

  49. Guiyoule, A., Grimont, F., Iteman, I., Grimont, P.A., Lefevre, M., and Carniel, E., Plague pandemics investigated by ribotyping of Yersinia pestis strains, J. Clin. Microbiol., 1994, Vol. 32, No. 3, pp. 634–641.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Wong, D., Wild, M.A., Czarnecki, L.A., Adem, P., Eisen, R.J., Lawaczeck, E.W., et al., Primary pneumonic plague contracted from a mountain lion carcass, CID, 2009, Vol. 49, p. e33.

  51. One-Day (24–28 h) Standardized Laboratory Protocol for Molecular Subtyping of Yersinia pestis by Pulsed Field Gel Electrophoresis (PFGE), available at: http://www.pulsenetinternational.org/assets/PulseNet/uploads/pfge/yersinia_Apr2006.pdf (accessed December 15, 2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Mironova.

Additional information

Original Russian Text © L.V. Mironova, M.V. Afanas’ev, S.V. Balakhonov, 2015, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2015, No. 3, pp. 28–32.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironova, L.V., Afanas’ev, M.V. & Balakhonov, S.V. The application of pulsed field gel electrophoresis for molecular typing of causative agents of especially dangerous infections. Mol. Genet. Microbiol. Virol. 30, 141–147 (2015). https://doi.org/10.3103/S0891416815030052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416815030052

Keywords

Navigation