Skip to main content
Log in

Immunomodulatory roles of quorum-sensing signaling molecules N-acyl homoserine lactones isolated from clinical strain of P. aeuroginosa

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

In Gram negative bacteria the signaling molecule is N-acyl homoserine lactone where carbon chain length varies depending upon the species. Signaling mechanism has effect on many gene expression regulations used to organize and coordinate their multiple virulence determinants as such the production of bioflim, virulence factors required for colonizing and persistence in different environmental conditions. In present study we analyzed the immune responses by an N-acyl homoserine lactone extracted from a multidrug resistant clinical strain which form abundant biofilm. All isolates were positive for biofilm formation with varying intensities. Strain named MM51 which produces abundant and more amount of biofilm compare to other isolates was used to establish its potential effect to modulate immune responses. Result of study showed that N-acyl homoserine lactone MM51 stimulates or reduces antibody production by spleen cells, stimulates immunoglobulin E (IgE) secretion by human B cells, and inhibits cytokines (pg/mL) IFN-γ, IL-4 and IL-5 production by mature monocytes mono Mac 6 cell line. Pseudomonas aeruginosa has multifactorial virulence capability which might be under control of quorum sensing signals acyl homoserine lactones (AHLs). A various studies have already established its role in infection and immune modelling. Natural AHLs are able to make considerable changes in immune responses which also plays role in changing a host protective responses to pathogen protective responses.The study demonstrate that natural AHL has dose depended activity and depending on the concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sifri, C.D., Quorum sensing: bacteria talk sense, Clin. Infect. Dis., 2008, vol. 47, pp. 1070–1076.

    Article  CAS  PubMed  Google Scholar 

  2. Eberhard, A., Burlingame, A.L., Eberhard, C., Kenyon, G.L., Nealson, K.H., and Oppenheimer, N.J., Structural identification of autoinducer of Photobacterium fischeri luciferase, Biochemistry (Moscow), 1981, vol. 20, pp. 2444–2449.

    Article  CAS  Google Scholar 

  3. Eberl, L., N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria, Syst. Appl. Microbiol., 1999, vol. 22, pp. 493–506.

    Article  CAS  PubMed  Google Scholar 

  4. Lakshmana Gowda, K., John, J, Marie, M.A.M., Sangeetha, G., and Bindurani, S.R., Isolation and characterization of quorum-sensing signalling molecules in Pseudomonas aeruginosa isolates recovered from nosocomial infections, APMIS, 2013, vol. 121, pp. 886–889.

    Article  PubMed  Google Scholar 

  5. Schaefer, A.L., Greenberg, E.P., Oliver, C.M., Oda, Y., Huang, J.J., Bittan-Banin, G., et al., A new class of homoserine lactone quorum-sensing signals, Nature, 2008, vol. 454, pp. 595–599.

    Article  CAS  PubMed  Google Scholar 

  6. Antonic, V., Stojadinovic, A., Zhang, B., Izadjoo, M.J., and Alavi,.M., Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of Staphylococcus aureus, Infect Drug Resist., 2013, vol. 6, pp. 175–186.

    PubMed Central  PubMed  Google Scholar 

  7. Wang, Y. and Ma, S., The small molecules modulating AHL-based quorum sensing to attenuate bacteria virulence and biofilms as promising antimicrobial drugs, Curr. Med. Chem., 2013, vol. 21, pp. 296–311.

    Article  CAS  PubMed  Google Scholar 

  8. Hooi, D.S.W., Bycroft, B.W., Chabra, S.R., Williams, P., and Pritchard, D.I., Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules, Infect. Immun., 2004, vol. 72, pp. 6463–6470.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gellatly, S.L. and Hancock, R.E.W., Pseudomonas aeruginosa: new insights into pathogenesis and host defenses, Pathog. Dis., 2013, vol. 67, pp. 159–173.

    Article  CAS  PubMed  Google Scholar 

  10. Rao, R.S., Karthika, R.U., Singh, S.P., Shashikala, P., Kanungo, R., Jayachandran, S., et al., Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii, Indian J. Med. Microbiol., 2008, vol. 26, pp. 333–337.

    Article  PubMed  Google Scholar 

  11. Gupta, R.K., Chhibber, S., and Harjai, K., Acyl homoserine lactones from culture supernatants of Pseudomonas aeruginosa accelerate host immunomodulation, PLoS One, 2001, vol. 6, p. e20860.

    Article  Google Scholar 

  12. Swartjes, J.J.T.M., Das, T., Sharifi, S., Subbiahdoss, G., Sharma, P.K., Krom, B.P., et al., A functional DNase I coating to prevent adhesion of bacteria and the formation of biofilm, Adv. Funct. Mater., 2013, vol. 23, pp. 2843–2849.

    Article  CAS  Google Scholar 

  13. Parhamifar, L., Andersen, H., and Moghimi, S.M., Lactate dehydrogenase assay for assessment of polycation cytotoxicity, Methods Mol. Biol. Clifton N.J., 2013, vol. 948, pp. 13–22.

    CAS  Google Scholar 

  14. Wheeler, D.J., Robins, A., Pritchard, D.I., Bundick, R.V., and Shakib, F., Potentiation of in vitro synthesis of human IgE by cyclosporin A (CsA), Clin. Exp. Immunol., 1995, vol. 102, pp. 85–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cirioni, O., Giacometti, A., Ghiselli, R., Acqua, G.D., Orlando, F., Mocchegiani, F., et al., RNAIII-inhibiting peptide significantly reduces bacterial load and enhances the effect of antibiotics in the treatment of central venous catheter-associated Staphylococcus aureus infections, J. Infect. Dis., 2006, vol. 193, pp. 180–186.

    Article  CAS  PubMed  Google Scholar 

  16. Raad, I. and Hanna, H., Intravascular catheters impregnated with antimicrobial agents: a milestone in the prevention of bloodstream infections, Support Care Cancer Off. J. Multinatl. Assoc. Support Care Cancer, 1999, vol. 7, pp. 386–390.

    CAS  Google Scholar 

  17. Khajanchi, B.K., Kirtley, M.L., Brackman, S.M., and Chopra, A.K., Immunomodulatory and protective roles of quorum-sensing signaling molecules N-acyl homoserine lactones during infection of mice with Aeromonas hydrophila, Infect. Immun., 2011, vol. 79, pp. 2646–2657.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lee, R.J., Chen, B., Redding, K.M., Margolskee, R.F., and Cohen, N.A., Mouse nasal epithelial innate immune responses to Pseudomonas aeruginosa quorum-sensing molecules require taste signaling components, Innate Immun., 2013, Sep. 17. doi:10.1177/1753425913503386

  19. Alcaide, P., Maganto-Garcia, E., Newton, G., Travers, R., Croce, K.J., Bu, D.X., Luscinskas, F.W., and Lichtman, A.H., Difference in Th1 and Th17 lymphocyte adhesion to endothelium, J. Immunol., 2012, vol. 188, pp. 1421–1430.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Williams, P., Quorum sensing, communication and cross-kingdom signalling in the bacterial world, Microbiology, 2007, vol. 153, pp. 3923–3938.

    Article  CAS  PubMed  Google Scholar 

  21. Smith, R.S., Harris, S.G., Phipps, R., and Iglewski, B., The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo, J. Bacteriol., 2002, vol. 184, pp. 1132–1139.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Pernthaner, A., Cole, S.A., Morrison, L., and Hein, W.R., Increased expression of interleukin-5 (IL-5), IL-13, and tumor necrosis factor alpha genes in intestinal lymph cells of sheep selected for enhanced resistance to nematodes during infection with Trichostrongylus colubriformis, Infect. Immun., 2005, vol. 73, pp. 2175–2183.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Yeung, V.P., Gieni, R.S., Umetsu, D.T., and DeKruyff, R.H., Heat-killed Listeria monocytogenes as an adjuvant converts established murine Th2-dominated immune responses into Th1-dominated responses, J. Immunol., 1998, vol. 161, pp. 4146–4152.

    CAS  PubMed  Google Scholar 

  24. Ritchie, A.J., Yam, A.O., Tanabe, K.M., Rice, S.A., and Cooley, M.A., Modification of in vivo and in vitro T- and B-cell-mediated immune responses by the Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone, Infect. Immun., 2003, vol. 71, pp. 4421–4431.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pierson, L.S., III, Bacterial signaling: identification of N-acyl-homoserine lactone-producing bacteria, Plant Health Instruct., 2000. doi: 10.1094/PHI-I-2000-1214-01.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Ali M. Marie.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnappa, L.G., Marie, M.A.M., Al Sheikh, Y.A. et al. Immunomodulatory roles of quorum-sensing signaling molecules N-acyl homoserine lactones isolated from clinical strain of P. aeuroginosa . Mol. Genet. Microbiol. Virol. 29, 220–226 (2014). https://doi.org/10.3103/S0891416814040053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416814040053

Keywords

Navigation