Skip to main content
Log in

Diagnostics of horizontal velocity field in the solar atmosphere: Line Ba II λ 455.403 nm

  • Solar Physics
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

We proposed a method for diagnostics of the horizontal velocity field based on 2D observations at the center of the solar disk with high spatial and temporal resolution. The method consists in semiempirical modeling of the solar atmosphere by solving the inverse radiative transfer problem and subsequent obtaining horizontal velocities by solution of the corresponding hydrodynamic equations. We investigated the diagnostic capabilities of the line Ba II λ 455.403 nm (considering hyperfine structure and isotope splitting) for studying the horizontal velocity field of the nonhomogeneous solar atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. A. Vainshtein, I. I. Sobel’man, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, in Ser. Springer Series in Chemical Physics, Vol. 7 (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1981).

    Google Scholar 

  2. A. A. Samarskii, Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971).

    Google Scholar 

  3. M. I. Stodilka, “Tikhonov stabilizers in inverse problems of spectral studies,” Kinematika Fiz. Nebesnykh Tel 19, 334–343 (2003).

    ADS  Google Scholar 

  4. M. I. Stodilka, “The inverse problem for a study of solar and stellar atmosphere inhomogeneities,” Zh. Fiz. Dosl. 6, 435–442 (2002).

    Google Scholar 

  5. M. Asplund, H. G. Ludwig, A. Nordlund, and R. F. Stein, “The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation,” Astron. Astrophys. 359, 669–681 (2000).

    ADS  Google Scholar 

  6. A. Burgess and M. J. Seaton, “A general formula for the calculation of atomic photoionization cross-sections,” Mon. Not. R. Astron. Soc. 120, 121–151 (1960).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. F. Cattaneo, N. E. Hurlburt, and J. Toomre, “Supersonic convection,” Astrophys. J., Lett. 349, L63–L66 (1990).

    Article  ADS  Google Scholar 

  8. F. Cattaneo, D. Lenz, and N. Weiss, “On the origin of the solar mesogranulation,” Astrophys. J., Lett. 563, L91–L94 (2001).

    Article  ADS  Google Scholar 

  9. M. C. M. Cheung, M. Schüssler, and F. Moreno-Insertis, “Magnetic flux emergence in granular convection: radiative MHD simulations and observational signatures,” Astron. Astrophys. 467, 703–719 (2007).

    Article  ADS  Google Scholar 

  10. L. Gizon, R. Cameron, J. Jackiewicz, et al., “Helioseismology at MPS,” in Modern Solar Facilities–Advanced Solar Science: Proc. Workshop Held at Göttingen, Sept. 27–29, 2006, Ed. by F. Kneer, K. G. Puschmann, and A. D. Wittmann, (Univ. Göttingen, Göttingen, 2007), pp. 89–102.

    Google Scholar 

  11. J. A. Leese, C. S. Novak, and B. B. Clark, “An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation,” J. Appl. Meteorol. 10, 118–132 (1971).

    Article  ADS  Google Scholar 

  12. A. Malagoli, F. Cattaneo, and N. H. Brummell, “Turbulent supersonic convection in three dimensions,” Astrophys. J., Lett. 361, L33–L36 (1990).

    Article  ADS  Google Scholar 

  13. L. J. November and G. W. Simon, “Precise proper-motion measurement of solar granulation,” Astrophys. J. 333, 427–442 (1988).

    Article  ADS  Google Scholar 

  14. V. L. Ol’shevskii, N. G. Shchukina, and I. E. Vasil’eva, “NLTE formation of the resonance Ba II line 455.4 nm in the solar atmosphere,” Kinematics Phys. Celestial Bodies 24, 145–158 (2008).

    Article  ADS  Google Scholar 

  15. G. Peach, “A revised general formula for the calculation of atomic photoionization cross sections,” Mon. Not. R. Astron. Soc. 71, 13–27 (1967).

    ADS  Google Scholar 

  16. S. R. O. Ploner, S. K. Solanki, and A. S. Gadun, “Is solar mesogranulation a surface phenomenon?” Astron. Astrophys. 356, 1050–1054 (2000).

    ADS  Google Scholar 

  17. M. Rieutord, T. Roudier, H.-G. Ludwig, et al., “Are granules good tracers of solar surface velocity fields?” Astron. Astrophys. 377, L14–L17 (2001).

    Article  ADS  Google Scholar 

  18. M. Rieutord, T. Roudier, J. M. Malherbe, and F. Rincon, “On mesogranulation, network formation and supergranulation,” Astron. Astrophys. 357, 1063–1072 (2000).

    ADS  Google Scholar 

  19. T. Roudier, F. Lignieres, M. Rieutord, et al., “Families of fragmenting granules and their relation to meso-and supergranular flow fields,” Astron. Astrophys. 409, 299–308 (2003).

    Article  ADS  Google Scholar 

  20. N. G. Shchukina, V. L. Olshevsky, and E. V. Khomenko, “The solar Ba II 4554 Å Line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model,” Astron. Astrophys. 506, 1393–1404 (2009).

    Article  ADS  Google Scholar 

  21. G. W. Simon, A. M. Title, and N. O. Weiss, “Modeling mesogranules and exploders on the solar surface,” Astrophys. J. 575, 775–788 (1991).

    Article  ADS  Google Scholar 

  22. R. F. Stein and A. Nordlund, “Simulations of solar granulation. I. General properties,” Astrophys. J. 499, 914–933 (1998).

    Article  ADS  Google Scholar 

  23. L. H. Strous, “Feature tracking: deriving horizontal motion and more,” in Proc. 4th SOHO Workshop on Helioseismology, Pacific Grove, CA, Apr. 2–6, 1995, Ed. by B. Battrick, (ESA, Noordwijk, 1995), Vol. 2, pp. 213–217.

    Google Scholar 

  24. M. Verma, M. Steffen, and C. Denker, “Evaluating local correlation tracking using CO5BOLD simulations of solar granulation,” Astron. Astrophys. 555, A136 (2013).

    Article  ADS  Google Scholar 

  25. N. Vitas, C. E. Fischer, A. Vögler, and C. U. Keller, “Fast horizontal flows in a quiet Sun MHD simulation and their spectroscopic signatures,” Astron. Astrophys. 532, A110 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Stodilka.

Additional information

Original Russian Text © M.I. Stodilka, 2016, published in Kinematika i Fizika Nebesnykh Tel, 2016, Vol. 32, No. 3, pp. 63–74.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stodilka, M.I. Diagnostics of horizontal velocity field in the solar atmosphere: Line Ba II λ 455.403 nm. Kinemat. Phys. Celest. Bodies 32, 145–152 (2016). https://doi.org/10.3103/S0884591316030041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591316030041

Navigation