Skip to main content
Log in

On the possibility of separation of aerosol and methane absorption in the long-wavelength spectral range for giant planets

  • Dynamics and Physics of Bodies of the Solar System
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

To determine the aerosol absorption component of the effective optical depth τ κeff , a special method has been developed. It is based on the implausible effect of the decrease of the aerosol scattering component τ aeff in dependence on the atmospheric pressure P, if τ κeff = 0. It is the elimination of this effect by selecting the values of τ κeff that allows the latter to be determined. This method was tested with the data of observations of the North Equatorial Belt (NEB) of Jupiter’s disk in the methane absorption bands at λ = 619 and 727 nm. This allowed us to determine the values of τ κeff and the imaginary part of the refractive index of aerosol particles (n i = 0.00063, 0.00065, 0.0007, and 0.00069 at λ = 605.5, 631.3, 714.7, and 741.4 nm, respectively) and to correctly specify the characteristic of the vertical structure of clouds of the planet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Avramchuk, L. A. Bugaenko, A. V. Morozhenko, and E. G. Yanovitskii, “The results of research of Jupiter, performed at the Main astrophysical observatory of the Ukrainian SSR Academy of Sciences,” Astrom. Astrofiz., No. 31, 54–68 (1977).

    ADS  Google Scholar 

  2. M. S. Dementiev and A. V. Morozhenko, “On the vertical inhomogenity of Uranus and Neptune,” Astron. Vestn. 24, 127–134 (1990).

    ADS  Google Scholar 

  3. A. V. Morozhenko, “The results of the polarization studies of Jupiter,” Astrom. Astrofiz., No. 30, 47–54 (1976).

    ADS  Google Scholar 

  4. A. V. Morozhenko, “On the structure of the Jupiter’s cloud layer,” Pis’ma Astron. Zh. 10, 775–779 (1984).

    ADS  Google Scholar 

  5. A. V. Morozhenko, “The vertical structure of the Jupiter’s latitudinal cloud belts,” Astron. Vestn. 19, 64–76 (1985).

    ADS  Google Scholar 

  6. A. V. Morozhenko, “Problems in research of the vertical structures of cloud layers in atmospheres of giant planets,” Kinematika Fiz. Nebesnykh Tel 9, 3–26 (1993).

    Google Scholar 

  7. A. V. Morozhenko, “Probable limits for particle size and relative concentrations of aerozol and methane on formation levels of methane absorption belt centers at λλ 727, 619, 543 and 441 nm in the Neptune’s atmosphere,” Kinematika Fiz. Nebesnykh Tel 15, 110–122 (1999).

    ADS  Google Scholar 

  8. A. V. Morozhenko, “The difference between vertical structures of cloud layers of giant planets,” Kinematika Fiz. Nebesnykh Tel 17, 261–278 (2001).

    ADS  Google Scholar 

  9. A. V. Morozhenko, “Redefining the values of monochromatic absorption coefficients of methane, considering thermal conditions of the giant planets. II. Jupiter,” Kinematika Fiz. Nebesnykh Tel 19, 483–500 (2003).

    ADS  Google Scholar 

  10. A. V. Morozhenko and E. G. Yanovitskii, “Parameters of the optical model of the Jovian atmosphere for the continuous spectrum in 0.35–0.92 µm range,” Pis’ma Astron. Zh. 2, 50–54 (1976).

    ADS  Google Scholar 

  11. O. V. Morozhenko, Methods and Results of the Remote Probing of Planetary Atmospheres (Naukova Dumka, Kiev, 2004) [in Ukrainian].

    Google Scholar 

  12. A. S. Ovsak, “Changes in the volume scattering coefficient of aerosol in the Jovian atmosphere derived from whole-disk observations,” Kinematics Phys. Celestial Bodies 31, 197–204 (2015).

    Article  ADS  Google Scholar 

  13. A. S. Ovsak, V. G. Teifel’, A. P. Vid’machenko, and P. G. Lysenko, “Zonal differences in the vertical structure of the cloud cover of Jupiter from the measurements of the methane absorption bands at 727 and 619 nm,” Kinematics Phys. Celestial Bodies 31, 23–39 (2015).

    Google Scholar 

  14. E. G. Yanovitskii, “The effective optical width of a cloud layer of the atmosphere, in which a visible spectrum of the planet forms. The concept and basic evaluation,” Kinematika Fiz. Nebesnykh Tel 13 (6), 18–25 (1997).

    Google Scholar 

  15. J. W. Chamberlain, “The atmosphere of Venus near cloud top,” Astrophys. J. 141, 1184–1205 (1965).

    Article  ADS  Google Scholar 

  16. M. S. Dementiev and A. V. Morozhenko, “Zones and belts of Jupiter’s disk. The difference in the vertical structure of cloud layers,” Astron. Vestn. 24, 275–287 (1990).

    ADS  Google Scholar 

  17. Zh. M. Dlugach and M. I. Mishchenko, “The effect of aerosol shape in retrieving optical properties of cloud particles in the planetary atmospheres from the photopolarimetric data. Jupiter,” Sol. Syst. Res. 32, 102–111 (2005).

    Article  ADS  Google Scholar 

  18. Zh. M. Dlugach and M. I. Mishchenko, “Photopolarimetry of planetary atmospheres: what observational data are essential for a unique retrieval of aerosol microphysics?,” Mon. Not. R. Astron. Soc. 384, 64–70 (2008).

    Article  ADS  Google Scholar 

  19. L. P. Giver, “Intensity measurements of the CH4 bands in the region of 4350 to 10600 Å,” J. Quant. Spectrosc. Radiat. Transfer 19, 311–322 (1978).

    Article  ADS  Google Scholar 

  20. E. Karkoschka, “Spectrophotometry of the Jovian planets and Titan at 300 to 1000 nm wavelength: The methane spectrum,” Icarus 111, 967–982 (1994).

    Article  Google Scholar 

  21. E. Karkoschka, “Methane, ammonia, and temperature measurements of the Jovian planets and Titan from CCD-spectrophotometry,” Icarus 133, 134–146 (1998).

    Article  ADS  Google Scholar 

  22. G. F. Lindal, “The atmosphere of Neptune: An analysis of radio occultation data with Voyager 2,” Astron. J. 103, 967–982 (1992).

    Article  ADS  Google Scholar 

  23. M. I. Mishchenko, “Physical properties of the upper troposphere aerosols in the equatorial region of Jupiter,” Icarus 84, 296–304 (1990).

    Article  ADS  Google Scholar 

  24. M. I. Mishchenko, “The FORTRAN code for computing the scattering of an ensemble of polydisperse, homogeneous spherical particles in based on the Lorenz-Mie theory,” http://www.giss.nasa.gov/staff/mmishchenko/ ftpcode/spher.f.

  25. M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).

    Article  ADS  Google Scholar 

  26. A. V. Morozhenko, “New determination of monochromatic methane absorption coefficients with regard to the thermal conditions in the atmospheres of giant planets. IV. Jupiter and Saturn,” Kinematics Phys. Celestial Bodies 23, 245–257 (2007).

    Article  ADS  Google Scholar 

  27. A. V. Morozhenko, A. S. Ovsak, and P. P. Korsun, “The vertical structure of Jupiter’s cloud layer before and after the impact of comet Shoemaker–Levy 9,” in Proc. Eur. SL-9/Jupiter Workshop, München, Feb. 13–15, 1995 (European Southern Observatory, Garching, 1995), p. 267.

    Google Scholar 

  28. A. V. Morozhenko and E. G. Yanovitskij, “The optical properties of Venus and Jovian planets. I. The atmosphere of Jupiter according to polarimetric observations,” Icarus 18, 583–592 (1973).

    Article  ADS  Google Scholar 

  29. H. B. Niemann, S. K. Altreya, G. R. Carignan, et al., “The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer,” J. Geophys. Res. 103, 22831–22845 (1998).

    Article  ADS  Google Scholar 

  30. A. S. Ovsak, “Calculation of effective optical depth of absorption line formation in homogeneous semi-infinite planetary atmosphere during anisotropic scattering,” Kinematics Phys. Celestial Bodies 26, 86–88 (2010).

    Article  ADS  Google Scholar 

  31. A. S. Ovsak, “Upgraded technique to analyze the vertical structure of the aerosol component of the atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 29, 291–300 (2013).

    Article  ADS  Google Scholar 

  32. A. S. Ovsak, “Vertical structure of cloud layers in the atmospheres of giant planets. I. On the influence of variations of some atmospheric parameters on the vertical structure characteristics,” Sol. Syst. Res. 49, 43–50 (2015).

    Article  ADS  Google Scholar 

  33. A. Seiff, D. B. Kirk, T. C. D. Knight, et al., “Thermal structure of Jupiter’s atmosphere near the edge of a 5-µm hot spot in the north equatorial belt,” J. Geophys. Res. 103, 22857–22889 (1998).

    Article  ADS  Google Scholar 

  34. E. G. Yanovitskii and A. S. Ovsak, “Effective optical depth of absorption line formation in semi-infinite planetary atmospheres,” Kinematika Fiz. Nebesnykh Tel 13 (4), 1–19 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ovsak.

Additional information

Original Russian Text © A.V. Morozhenko, A.S. Ovsak, 2015, published in Kinematika i Fizika Nebesnykh Tel, 2015, Vol. 31, No. 5, pp. 20–29.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozhenko, A.V., Ovsak, A.S. On the possibility of separation of aerosol and methane absorption in the long-wavelength spectral range for giant planets. Kinemat. Phys. Celest. Bodies 31, 225–231 (2015). https://doi.org/10.3103/S0884591315050074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591315050074

Keywords

Navigation