Skip to main content
Log in

NLTE formation of the solar spectrum of silicon: Abundance of silicon in a three-dimensional model of the solar atmosphere

  • Solar Physics
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

We investigated the NLTE formation of the solar spectrum of neutral silicon using 3D hydrodynamic model of the solar atmosphere and realistic atomic model. We show that, within the intergranular region, combined action of the deficit in the source function and excess in opacity due to the overpopulation of the lower Si I levels leads to a considerably higher increase in the central depth D and equivalent width W of these lines as compared to the granules. We have fitted silicon abundances A W and A D from the equivalent widths W and central depths D for 65 Si I lines using a 3D model. We show that a total error in the calculated silicon abundance due to neglecting NLTE and 3D effects, as well as the uncertainty in the van der Waals broadening constant γ6, turns out to be −0.1 dex. Using a semiclassical theory by Anstee, Barklem, and O’Mara in calculating γ6 yields a fair coincidence between the values of A W and A D , because the average difference A W A D does not exceed 0.01 dex for both NLTE and LTE. When applying the Unsold’s approximation in calculating γ6 with an enhancement factor E = 1.5, the abundances A W and A D proved to be in disagreement with one another. We analyzed the “solar” oscillator strength scale by Gurtovenko and Kostik, as well as the experimental one by Garz and Becker et al. We show that using “solar” oscillator strengths log gfw leads to a minimum trend with the equivalent widths for NLTE abundances A W , A D , their difference A W A D , and standard deviations. The NLTE abundance of silicon obtained using solar oscillator strength scale by Gurtovenko and Kostik is A NTLE W = 7.549 ± 0.016. This value is in good agreement with the value of silicon abundance recommended by Grevesse and Sauval for the CI chondrite meteorites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Allen, Astrophysical Quantities, (London, The Athlone, 1973).

    Google Scholar 

  2. E. A. Gurtovenko and R. I. Kostyk, Fraunhofer Spectrum and a Solar Force System for Oscillators (Nauk. Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  3. A. V. Sukhorukov and N. G. Shchukina, “Solar Spectrum of Silicon and Diagnostics of the Solar Atmosphere”, Kinemat. Phys. Celest. Bodies 28, 27–34 (2012).

    Article  ADS  Google Scholar 

  4. A. V. Sukhorukov and N. G. Shchukina, “NLTE Formation of the Solar Silicon Spectrum: Silicon Abundance in One-Dimensional Models of The Solar Atmosphere,” Kinemat. Phys. Celest. Bodies 28, 169–182 (2012).

    Article  ADS  Google Scholar 

  5. N. G. Shchukina and A. V. Sukhorukov, “Solar” Oscillator Strength Scale and Determination of the LTE Silicon Abundance,” Kinemat. Phys. Celest. Bodies 28, 3–21 (2012).

    Article  Google Scholar 

  6. E. Anders and N. Grevesse, “Abundances of the Elements-Meteoritic and Solar,” Geochim. Cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  Google Scholar 

  7. M. Asplund, “Line Formation in Solar Granulation. III. The Photosperic Si and Meteoritic Fe Abundances,” Astron. Astrophys. 359, 755–758 (2000).

    ADS  Google Scholar 

  8. M. Asplund, “New Light on Stellar Abundance Analyses: Departures from LTE and Homogeneity,” Annu. Rev. Astron. Astrophys. 43(1), 481–530 (2005).

    Article  ADS  Google Scholar 

  9. M. Asplund, N. Grevesse, and A. J. Sauval, “The Solar Chemical Compositon,” in Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, Ed. by F. N. Bash and T. G. Barnes (ASP, San Francisco, 2005), Vol. 336, pp. 25–38.

    ADS  Google Scholar 

  10. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, “The Chemical Composition of the Sun,” Annu. Rev. Astron. Astrophys. 47(1), 481–522 (2009).

    Article  ADS  Google Scholar 

  11. M. Asplund, H.-G. Ludwig, Å. Hordlund, and R. F. Stein, “The Effects of Numerical Resolution on Hydrodynamical Surface Convection Simulations,” Astron. Astrophys. 359, 669–681 (2000).

    ADS  Google Scholar 

  12. M. Asplund, Å. Nordlund, R. Trampedach, et al., “Line Formation in Solar Granulation. I. Fe Line Shapes, Shifts and Asymmetries,” Astron. Astrophys. 359, 729–742 (2000).

    ADS  Google Scholar 

  13. L. Auer, P. Fabiani Bendicho, and J. Trujillo Bueno, “Multidimensional Radiative Transfer with Multilevel Atoms. I. ALI Method with Preconditioning of the Rate Equations,” Astron. Astrophys. 292, 599–615 (1994).

    ADS  Google Scholar 

  14. J. N. Bahcall, S. Basu, M. Pinsonneault, and A. M. Serenelli, “Helioseismological Implications of Recent Solar Abundance Determinations,” Astrophys. J. 618(2), 1049–1056 (2005).

    Article  ADS  Google Scholar 

  15. P. S. Barklem and B. J. O’Mara, “The Broadening of p-d and d-p Transitions by Collisions with Neutral Hydrogen Atoms,” Mon. Notic. Roy. Astron. Soc. 290(1), 102–106 (1997).

    Article  ADS  Google Scholar 

  16. P. S. Barklem, B. J. O’ Mara, and J. E. Ross, “The Broadening of d-f and f-d Transitions by Collisions with Neutral Hedrogen Atoms,” Mon. Notic. Roy. Astron. Soc. 296(4), 1057–1060 (1998).

    Article  ADS  Google Scholar 

  17. S. Basu and H. M. Antia, “Constraining Solar Abundances Using Helioseismology,” Astrophys. J. Lett. 606(1), 85–88 (2004).

    Article  ADS  Google Scholar 

  18. U. Becker, P. Zimmermann, and H. Holweger, “Solar and Meteoritic Abundance of Silicon,” Geochim. Cosmochim. Acta 44, 2145–2149 (1980).

    Article  ADS  Google Scholar 

  19. N. Bello González, M. Flores Soriano, F. Kneer, et al., “Acoustic Waves in the Solar Atmosphere at High Spatial Resolution. II. Measurement in the Fe I 5434 Å Line,” Astron. Astrophys. 522, 1–8 (2010).

    Article  Google Scholar 

  20. L. Delbouille, G. Roland, and L. Neven, Photometric atlas of the solar spectrum from λ 3000 to λ 10000 Å (L’Institut d’Astrophysiqué de l’Universite de Liège, Liège, 1973).

  21. H. W. Drawin, “Zur Formelmäβigen Darstellung des Ionisierungsqerschnitts für den Atom-Atomstoβ und über die Ionen-Elektronen-Rekombination im dichten Neutralgas,” Z. Phys. 211(4), 404–417 (1968).

    Article  ADS  Google Scholar 

  22. H. W. Drawin, “Influence of Atom-Atom Collisions on the Collisional-Radiative Ionization and Recombination Coefficients of Hydrogen Plasmas,” Z. Phys. 225(5), 483–493 (1969).

    Article  ADS  Google Scholar 

  23. J. R. Fuhr, G. A. Martin, and W. L. Wiese, “Atomic Transition Probabilities. Iron Through Nickel,” J. Phys. Chem. Ref. Data 17(4) (1988).

    Google Scholar 

  24. T. Garz, “Absolute Oscillator Strength of Si I Lines Between 2500 Å and 8000 Å,” Astron. Astrophys. 26, 471–477 (1973).

    ADS  Google Scholar 

  25. N. Grevesse and A. J. Sauval, “Standard Solar Composition,” Space Sci. Rev. 85(1), 161–174 (1999) (in: Solar Composition and Its Evolution-from Core to Corona, Ed. by C. Frolich, M. C. E. Huber, and S. K. Solanki (Springer, 1999)).

    Article  ADS  Google Scholar 

  26. H. R. Griem, Spectral Line Broadening by Plasmas, (Acad. Press, New York, 1974).

    Google Scholar 

  27. H. Holweger and E. A. Müller, “The Photosperic Barium Spectrum: Solar Abundance and Collision Broadening of Ba II Lines by Hydrogen,” Solar Phys. 39(1), 19–30 (1974).

    Article  ADS  Google Scholar 

  28. E. V. Khomenko, R. I. Kostik, and N. G. Shchukina, “Five-Minute Oscillations Above Granules and Integranular Lines,” Astron. Astrophys. 369, 660–671 (2001).

    Article  ADS  Google Scholar 

  29. R. I. Kostik, E. V. Khomenko, and N. G. Shchukina, “Solar Granulation from Photosphere to Low Chromosphere Observed in Ba II 4554 Å Line,” Astron. Astrophys. 506, 1405–1414 (2009).

    Article  ADS  Google Scholar 

  30. K. Lodders, “Solar System Abundances and Condensation Temperatures of the Elements,” Astrophys. J. 591(2), 1220–1247 (2003).

    Article  ADS  Google Scholar 

  31. D. Mihalas, Stellar Atmospheres, 2nd. ed. (W.H. Freeman and Co, San Francisco, 1978).

    Google Scholar 

  32. N. G. Shchukina, V. L. Olshevsky, and E. B. Khomenko, “The Solar Ba II 4554 Å Line as a Doppler Diagnostic: NLTE Analysis in 3D Hydrodynamical Model,” Astron. Astrophys. 506, 1393–1404 (2009).

    Article  ADS  Google Scholar 

  33. N. Shchukina and J. Trujillo Bueno, “The Iron Line Formaton Problem in Three-Dimensional Hydrodynamic Models of Solar-Like Photospheres,” Astrophys. J. 550(2), 970–990 (2001).

    Article  ADS  Google Scholar 

  34. N. Shchukina and J. Trujillo Bueno, “Three-Dimensional Radiative Transfer Modeling of the Polarization of the Solar Continuous Spectrum,” Astrophys. J. 694, 1364–1378 (2009).

    Article  ADS  Google Scholar 

  35. R. F. Stein and Å. Nordlund, “Simulations of Solar Granulation,” Astrophys. J. 342(1), L95–L98 (1989).

    Article  ADS  Google Scholar 

  36. R. F. Stein and A. Nordlund, “Topology of Convection Beneath the Solar Surface,” Astrophys. J. 499(2), 914–933 (1998).

    Article  ADS  Google Scholar 

  37. J. Trujillo Bueno, N. G. Shchukina, and A. Asensio Ramos, “A Substantial Amount of Hidden Magnetic Energy in the Quiet Sun,” Nature 404, 326–329 (2004).

    Article  ADS  Google Scholar 

  38. A. Unsöld, Physik der Sternatmosphären, 2nd ed. (Springer, Berlin, 1955).

    Book  MATH  Google Scholar 

  39. S. Wedemeyer, “Stand Photospheric Abundance of Silicon in the Sun and in Vega,” Astron. Astrophys. 373, 998–1008 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.G. Shchukina, A.V. Sukhorukov, 2013, published in Kinematika i Fizika Nebesnykh Tel, 2013, Vol. 29, No. 1, pp. 26–49.

About this article

Cite this article

Shchukina, N.G., Sukhorukov, A.V. NLTE formation of the solar spectrum of silicon: Abundance of silicon in a three-dimensional model of the solar atmosphere. Kinemat. Phys. Celest. Bodies 29, 17–31 (2013). https://doi.org/10.3103/S0884591313010066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591313010066

Keywords

Navigation