Skip to main content
Log in

Acoustooptic technique of nondestructive quality control of crystals used in acoustoelectronics

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Acoustooptic modification of implementation of nondestructive crystals’ quality control technique is proposed. The potentials of the technique for the investigation of the properties of crystals used in acoustoelectronic devices are shown. Acoustooptic Schlieren images technique has been applied. Visualization of acoustic fields’ structure has allowed us to estimate the optical homogeneity of the material and to determine the spatial characteristics of the acoustic waves, the effects of divergence and deviation of propagation direction from the wave normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. da Cunha, S. Azevedo Fagundes, “Investigation on recent quartz-like materials for SAW applications,” IEEE Trans. Ultrason., Ferroelectrics, and Frequency Control 46, No. 6, 1583 (Nov. 1999), DOI: 10.1109/58.808884.

    Article  Google Scholar 

  2. K. S. Aleksandrov, Effective Piezoelectric Crystals for Acoustoelectronics, Piezoengineering and Sensors (SO RAN, Novosibirsk, 2007) [in Russian] 501 p.

    Google Scholar 

  3. P. Zheng, T.-L. Chin, D. Greve, I. Oppenheim, V. Malone, T. Ashok, J. Miller, L. Cao, “Langasite SAW device with gas-sensitive layer,” in Proc. of IEEE Int. Ultrasonics Symp., IUS, 11–14 Oct. 2010, San Diego, CA, USA (IEEE, 2010), pp. 1462–1465, DOI: 10.1109/ULTSYM.2010.5935779.

    Google Scholar 

  4. M. Weihnacht, A. Sotnikov, H. Schmidt, B. Wall, R. Grunwald, “Langasite: High temperature properties and SAW simulations,” in Proc. of IEEE Int. Ultrasonics Symp., IUS, 7–10 Oct. 2012, Dresden, Germany (IEEE, 2012), pp. 1549–1552, DOI: 10.1109/ULTSYM.2012.0387.

    Google Scholar 

  5. V. A. Komotskiy, S. A. Okot, “Technique and experimental results of frequency characteristics measuring of surface acoustic waves by laser sensing technique,” Scientific Session of MEPI 4, 255 (2005).

    Google Scholar 

  6. A. P. Dudka, R. Chitra, R. R. Choudhury, Yu. V. Pisarevsky, V. I. Simonov, “Accurate crystal structure refinement of La3Ta0.25Zr0.50Ga5.25O14,” Crystallography Rep. 55, No. 6, 1060 (Nov. 2010), DOI: 10.1134/S1063774510060246.

    Article  Google Scholar 

  7. N. V. Marchenkov, A. E. Blagov, B. A. Lomonov, Yu. V. Pisarevsky, M. V. Kovalchuk, “Study of the defect structure of paratellurite crystal using multiwave diffraction and normal X-ray diffractometry methods,” Crystallography Rep. 58, No. 2, 201 (Mar. 2013), DOI: 10.1134/S1063774513020168.

    Article  Google Scholar 

  8. A. E. Blagov, N. V. Marchenkov, Yu. V. Pisarevsky, P. A. Prosekov, M. V. Kovalchuk, “Measurement of piezoelectric constants of lanthanum-gallium tantalate crystal by X-ray diffraction methods,” Crystallography Rep. 58, No. 1, 49 (Jan. 2013), DOI: 10.1134/S1063774513010057.

    Article  Google Scholar 

  9. Nondestructive testing system. Types (techniques) and nondestructive testing technology. Terms and definitions. Handbook. Internet resource http://libgost.ru/posobie/63549-Tekst_Posobie_Sistema_nerazrushayushego_kontrolya_Vidy_metody_i_tehnologiya_nerazrushayushego_kontrolya_Terminy_i_opredeleniya_Spravochnoe _posobie.html [in Russian].

  10. GOST 23479-79 Nondestructive testing. Techniques of optical type. General requirements [in Russian].

  11. M. A. Breazeale, “Schlieren photography in physics,” Proc. SPIE 3581, 41 (1998), DOI: 10.1117/12.330504.

    Article  Google Scholar 

  12. A. Hanafy, C. I. Zanelli, “Quantitatrve real-time pulsed Schlieren imaging of ultrasonic waves,” in Proc. of IEEE Int. Ultrasonics Symp., IUS, 8–11 Dec. 1991, Orlando, FL, USA (IEEE, 1991), Vol. 2, pp. 1223–1227, DOI: 10.1109/ULTSYM.1991.234310.

    Article  Google Scholar 

  13. S. Stanic, “Quantitative Schlieren visualization,” Appl. Optics 17, No. 5, 837 (1978), DOI: 10.1364/AO.17.000837.

    Article  Google Scholar 

  14. C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic Press, Inc., Boston, 1998).

    Google Scholar 

  15. V. V. Kludzin, V. S. Kulakov, “Criteria for comparing the acoustic self-collimating modes in acousto-optic crystals,” in Proc. of IV Int. Symp. on Surface Waves in Solid and Layered Structures, 7–12 June 1998, St. Petersburg, Russia (St. Petersburg, 1998), pp. 325–335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Balysheva.

Additional information

Original Russian Text © O.L. Balysheva, V.V. Kludzin, S.V. Kulakov, O.V. Shakin, 2014, published in Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2014, Vol. 57, No. 11, pp. 31–37.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balysheva, O.L., Kludzin, V.V., Kulakov, S.V. et al. Acoustooptic technique of nondestructive quality control of crystals used in acoustoelectronics. Radioelectron.Commun.Syst. 57, 501–505 (2014). https://doi.org/10.3103/S0735272714110041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272714110041

Keywords

Navigation