Skip to main content
Log in

Clay-salt soil formations in situ and ex situ

  • Genesis and Geography of Soils
  • Published:
Moscow University Soil Science Bulletin Aims and scope

Abstract

The methods of scanning and transmission electron microscopy, energy-dispersive analysis, and electron energy loss spectroscopy are used for the study of the interaction of soluble sodium and magnesium sulfates, as well as sodium chloride (in the presence of Na and Mg sulfates), with clay minerals: kaolinite and smectite. It is shown that the interaction of clay minerals with salt solutions initiates the reorganization of crystallites of the minerals and results in the formation of clay-salt microaggregates. The manifestation of the formation of clay-salt microaggregates and their composition, size, shape, and particle-packing state depend on the nature of the minerals and the properties of the salt participating in the interaction. In addition, the interaction of sodium chloride in the presence of sulfates results in the formation of peculiarly shaped pen tagonal clay–salt ultramicroaggregates. Their microdiffraction patterns are characterized by the presence of reflections corresponding to fivefold rotational symmetry; this may be evidence of their quasicrystalline structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vil’yams, V.R., Compactness and cohesion of soil structure, Pochvovedenie, 1935, nos. 5–6, pp. 52–63.

    Google Scholar 

  2. Gedroits, K.K., Soil structure and its agricultural significance, Izv. Gos. Inst. Opyt. Agronom., 1926, vol. 4, no. 3, pp. 45–56.

    Google Scholar 

  3. Gedroits, K.K., Uchenie o poglotitel’noi sposobnosti pochv (Theory on Absorbing Capacity of Soils), Moscow, 1975.

    Google Scholar 

  4. Gratias, D., Quasicrystals, Usp. Fiz. Nauk, 1988, vol. 156, no. 2, pp. 348–364.

    Google Scholar 

  5. Kachinskii, N.A., Fizika pochvy (Physics of Soil), Moscow: Vysshaya Shkola, 1965.

    Google Scholar 

  6. Kovda, V.A., Solontsy i solonchaki (Solonezes and Solonchaks), Moscow: Akad. Nauk SSSR, 1937.

    Google Scholar 

  7. Milanovskii, E.Yu., Gumusovye veshchestva pochv kak prirodnye gidrofobno-gidrofil’nye soedineniya (Humic Soil Substances as the Natural HydrophobicHydrophylic Compounds), Moscow: GEOS, 2009.

    Google Scholar 

  8. Milanovskii, E.Yu., Khaidapova, D.D., Pozdnya kov, A.I., et al., Praktikum po fizike tverdoi fazy pochv (Handbook on Practical Physics of Solid Soil Phase), Tula: Grif i K, 2011.

    Google Scholar 

  9. Orlov, D.S., Properties and functions of humic substances, in Guminovye veshchestva v biosfere (Humic Substances in Biosphere), Moscow, 1993.

    Google Scholar 

  10. Pinskii, D.L., Ionoobmennye protsessy v pochvakh (Ion Exchange Processes in Soils), Pushchino, 1997.

    Google Scholar 

  11. Sokolova, T.A. and Alekseeva, S.A., Adsorption of sulfate ions by soils (a review), Eurasian Soil Sci., 2008, vol. 41, no. 2, pp. 140–148.

    Article  Google Scholar 

  12. Sokolova, T.A. and Trofimov, S.Ya., Sorbtsionnye svoistva pochv. Adsorptsiya. Kationnyi obmen (Sorption Properties of Soils. Adsorption. Cation Exchanges), Tula: Grif i K, 2009.

    Google Scholar 

  13. Sokolova, T.A. and Tsarevskii, V.V., Study of salt accumulations in soils by morphological, technical, and chemical methods, in Sovetskie pochvovedy k 13 mezhdunarodnomu kongressu pochvovednov “Uspekhi poch vovedenya,” Gamburg, 1986 (The Soviet Soil Scientists to 13 Int. Congr. of Soil Scientists “Advanced Soil Science,” Hamburg, 1986), Moscow: Nauka, 1986, pp. 201–206.

    Google Scholar 

  14. Tursina, T.V., Yamnova, I.A., and Shoba, S.A., Experience of adjoin gradual morphomineralogical study of saline soils, Pochvovedenie, 1980, no. 2, pp. 30–43.

    Google Scholar 

  15. Kharitonova, G.V., Shein, E.V., and Voronov, B.A., Molekulyarnye mezhfaznye vzaimodeistviya v pochvakh (Molecular Interphase Interactions in Soils), Vladivostok: Dal’nauka, 2012.

    Google Scholar 

  16. Shein, E.V., Milanovskii, E.Y., Dembovetskii, A.V., Pervova, N.E., Kharitonova, G.V., Sirotskii, S.E., Fedotova, A.V., and Konovalova, N.S., Aggregate formation in saltaffected soils of the Baer mounds, Eurasian Soil Sci., 2013, vol. 46, no. 4, pp. 401–412.

    Article  Google Scholar 

  17. Alves, M.E. and Lavorenti, A., Sulfate adsorption and its relationships with properties of representative soils of the São Paulo State, Brazil, Geoderma, 2004, vol. 118, pp. 89–99.

    Article  Google Scholar 

  18. Bergaya, F., Lagaly, G., and Vayer, M., Cation and anion exchange, in Handbook of Clay Science, vol. 1: Developments in Clay Science, Bergaya, F., Theng, B.K.G., and Lagaly, G., Eds., Amsterdam, 2006.

    Google Scholar 

  19. Bindi, L., Steinhardt, P.J., Jao, N., and Lu, P.J., Natural quasicrystals, Science, 2009, vol. 324, pp. 1306–1309.

    Article  Google Scholar 

  20. Bolland, M.D.A., Gilkes, R.D., Brennan, R.F., and Allen, D.G., Comparison of seven phosphorus sorption indices, Aust. J. Soil. Res., 1996, vol. 34, pp. 81–89.

    Article  Google Scholar 

  21. Dähn, R., Jullien, M., Scheidegger, A.M., et al., Identification of neoformed Ni-phyllosilicates upon Ni uptake in montmorillonite: a transmission electron microscopy and extended X-ray absorption fine structure study, Clays Clay Miner., 2006, vol. 54, no. 2, pp. 209–219.

    Article  Google Scholar 

  22. Dähn, R., Scheideger, A.M., Manceau, A., et al., Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals: a polarized Xray absorption fine structure study, Geochim. Cosmochim. Acta, 2003, vol. 67, no. 1, pp. 6400–6415.

    Google Scholar 

  23. Edvards, P.J., Sulfur cycling, retention, and mobility in soil: a review, in USDA, General Technical Report NI-250, 1998.

    Google Scholar 

  24. Manceau, A., Lanson, B., Schlegel, M.L., et al., Quantitative Zn speciation in smeltercontaminated soils by EXAFS spectroscopy, Am. J. Sci., 2000, vol. 300, pp. 289–343.

    Article  Google Scholar 

  25. Peak, D., Ford, R.G., and Sparks, D.L., An in situ ATRFTIR investigation of sulfate bonding mechanisms on goethite, J. Colloid Interface Sci., 1999, vol. 218, pp. 289–299.

    Article  Google Scholar 

  26. Rajan, S.S.S., Sulfate adsorbed on hydrous alumina, ligands displaced, and changes in surface charge, Soil Sci. Soc. Am. J., 1978, vol. 53, pp. 39–44.

    Article  Google Scholar 

  27. Rao, S.M. and Sridharan, A., Mechanism of sulfate adsorption by kaolinite, Clays Clay Miner., 1984, vol. 32, no. 5, pp. 414–418.

    Article  Google Scholar 

  28. Rimmer, D.L. and Greenland, D.J., Effects of calcium carbonate on the swelling behavior of a soil clay, J. Soil Sci., 1976, vol. 27, pp. 129–139.

    Article  Google Scholar 

  29. Roth, C.H. and Pavan, M.A., Effects of lime and gypsum on clay dispersion and infiltration in samples of Brazilian oxisol, Geoderma, 1991, vol. 48, pp. 351–361.

    Article  Google Scholar 

  30. Schlegel, M.L., Charlet, L., and Manceau, A., Sorption of metalions on clay minerals. II. Mechanism of Co sorption on hectorite at high and low ionic strength and impact on the sorbent stability, J. Colloid Interface Sci., 1999, vol. 220, pp. 392–405.

    Article  Google Scholar 

  31. Schlegel, M.L., Manceau, A., Charlet, L., and Hazemann, J.L., Adsorption mechanisms of Zn on hectorite as function of time, pH, and ionic strength, Am. J. Sci., 2001, vol. 301, pp. 798–830.

    Article  Google Scholar 

  32. Shainberg, I., Sumner, M.E., Miller, W.P., et al., Use of gypsum on soils: a review, Adv. Soil Sci., 1989, vol. 9, pp. 1–111.

    Google Scholar 

  33. Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W., Metallic phase with longrange orientational order and no translational symmetry, Phys. Rev. Lett., 1984, vol. 53, no. 20, pp. 1951–1955.

    Article  Google Scholar 

  34. Sposito, G.A., The Surface Chemistry of Soils, New York: Oxford Univ. Press, 1984.

    Google Scholar 

  35. Sposito, G.A., Skipper, N.T., Sutton, R., et al., Surface geochemistry of the clay minerals, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, pp. 3358–3364

    Article  Google Scholar 

  36. Steinhardt, P.J. and Bindi, L., In search of natural of quasicrystals, Rep. Progr. Phys., 2012, vol. 75, no. 9, pp. 092601–092611.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kharitonova.

Additional information

Original Russian Text © G.V. Kharitonova, E.V. Shein, M.A. Pugachevskii, V.S. Komarova, Z.N. Tyugai, A.S. Manucharov, T.D. Ri, 2015, published in Vestnik Moskovskogo Universiteta. Pochvovedenie, 2015, No. 2, pp. 3–12.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharitonova, G.V., Shein, E.V., Pugachevskii, M.A. et al. Clay-salt soil formations in situ and ex situ. Moscow Univ. Soil Sci. Bull. 70, 50–57 (2015). https://doi.org/10.3103/S0147687415020027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0147687415020027

Keywords

Navigation