Skip to main content
Log in

Mechanisms of antarctic vascular plant adaptation to abiotic environmental factors

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Native species of the Antarctic Deschampsia antarctica and Colobanthus quitensis exist at the limits of survival of vascular plants. Fundamental adaptations to abiotic environmental factors that qualitatively distinguish them from the other vascular plants of extreme regions, namely temperature, ultraviolet radiation hardiness, and their genetic plasticity in the changeable environment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voinikov, V.K., Borovskii, G.B., Kolesnichenko, A.V., and Rikhvanov, E.G., Stressovye belki rastenii (Stress Proteins of Plants), Irkutsk: Inst. Geogr., Sib. Otd., Ross. Akad. Nauk, 2004.

    Google Scholar 

  2. Stavnitser, M.F., Taemnitsi shostoji chastyny svitu (Mysteries of the Sixth Part of the World), Kyiv, 1958.

    Google Scholar 

  3. Convey, P., Gibson, J.A.E., Hillenbrand, C.-D., et al., Antarctic terrestrial life—challenging the history of the frozen continent? Biol. Rev. Cambridge Philos. Soc., 2008, vol. 83, no. 2, pp. 103–117.

    Article  PubMed  Google Scholar 

  4. Parnikoza, I., Kozeretska, I., and Kunakh, V., Vascular plants of the maritime Antarctic: origin and adaptation, Am. J. Plant Sci., 2011, vol. 2, no. 3, pp. 381–395.

    Article  Google Scholar 

  5. Frenot, Y., Chown, S.L., Whinam, J., et al., Biological invasions in the Antarctic: extent, impacts and implications, Biol. Rev. Cambridge Philos. Soc., 2005, vol. 80, no. 1, pp. 45–72.

    Article  PubMed  Google Scholar 

  6. Alberdi, M., Bravo, L.A., Gutierrez, A., et al., Ecophysiology of Antarctic vascular plants, Physiol. Plant, 2002, vol. 115, no. 1, pp. 479–486.

    Article  CAS  PubMed  Google Scholar 

  7. Chwedorzewska, K.J. and Bednarek, P.T., Genetic and epigenetic studies on populations of Deschampsia antarctica Desv. from contrasting environments on King George Island, Pol. Polar Res., 2011, vol. 32, no. 1, pp. 15–26.

    Google Scholar 

  8. Holdgate, M.W., Terrestrial ecology in the maritime Antarctica, in Biologie Antarctique, Carick, R., Holdgate, M., and Prevost, J., Eds., Paris, 1964, pp. 181–940.

    Google Scholar 

  9. Crossley, L., Explore Antarctica, Cambridge: Univ. Press, 1995.

    Google Scholar 

  10. Antarctica: Secrets of the Southern Continent, McGonigal, D., Ed., London, 2008.

    Google Scholar 

  11. Soper, T., Antarctica: a Guide to the Wildlife, Chalfont St. Peter, UK: Bradt Guides, 2008.

    Google Scholar 

  12. Ross, R.M., Hofmann, E.E., and Quetin, L.B., Foundations for Ecological Research West of the Antarctic Peninsula, Antarct. Res. Ser., Washington, DC, 1996, vol. 70.

    Google Scholar 

  13. Kim, J.H., Ahn, I.-Y., Lee, K.S., et al., Vegetation of Barton Peninsula in the neighborhood of King Sejong Station (King George Island, maritime Antarctic), Polar. Biol., 2007, vol. 30, pp. 903–916.

    Article  Google Scholar 

  14. Hill, P.W., Farrar, J., Roberts, P., et al., Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition, Nat. Climate Change, 2011, vol. 1, pp. 50–53.

    Article  CAS  Google Scholar 

  15. Zhivet’ev, M.A., Graskova, I.A., Dudareva, L.V., et al., Change of fatty-acid composition in plants during adaptation to hypothermia, J. Stress Physiol. Biochem., 2010, vol. 6, no. 4, pp. 51–65.

    Google Scholar 

  16. Taran, N.Yu., Batsmanova, L.M., and Okanenko, O.A., Adaptive responses of Deschampsia antarctica Desv. to oxidative stress under Antarctic conditions, Ukr. Bot. Zh., 2007, vol. 64, no. 2, pp. 279–289.

    Google Scholar 

  17. Alekhina, N.D., Balnokin, Yu.V., Gavrilenko, V.F., et al., Fiziologiya rastenii (Plant Physiology), Ermakov, I.P., Ed., Moscow: Academia, 2005.

  18. Parnikoza, I.Yu., Inozemtseva, D.M., Tyschenko, O.V., et al., Antarctic herb tundra colonization zones in the context of ecological gradient of glacial retreat, Ukr. Bot. Zh., 2008, vol. 65, no. 4, pp. 504–511.

    Google Scholar 

  19. Pearce, R.S., Molecular analysis of acclimation to cold, Plant Growth Reg., 1999, vol. 29, pp. 47–76.

    Article  CAS  Google Scholar 

  20. Thomsashow, M.F., Plant cold acclimation: freezing tolerance genes and regulatory mechanisms, Plant. Mol. Biol., 1999, vol. 50, pp. 571–599.

    Google Scholar 

  21. Chinnusamy, V., Zhu, J., and Zhu, J.-K., Gene regulation during cold acclimation in plants, Physiol. Plant, 2006, vol. 126, pp. 52–61.

    Article  CAS  Google Scholar 

  22. Trunova, T.I., Rastenie i nizkotemperaturnyi stress (Plant and Low-Temperature Stress), Moscow: Nauka, 2007.

    Google Scholar 

  23. Kolesnichenko, A.V. and Voinikov, V.K., Belki nizkotemperaturnogo stressa u rastenii (Low-Temperature Stress Proteins in Plants), Irkutsk, 2003.

    Google Scholar 

  24. Grabel’nykh, O.I., Function and location of the 310-kDa stress protein in plant mitochondria, Extended Abstract of Candidate’s (Biol.) Dissertation, Irkutsk, 2000.

    Google Scholar 

  25. Ushakova, D.N. and Dal’, V.I., Bol’shoi entsiklopedicheskii slovar’ (Great Encyclopedic Dictionary), Russia, dicView, 2000.

    Google Scholar 

  26. Huiskes, A.H.L., Convey, P., and Bergstom, D.M., Trends in Antarctic terrestrial and limnetic ecosystems, in Antarctica as a Global Indicator, Springer-Verlag, 2006, pp. 1–13.

    Google Scholar 

  27. Bravo, L.A. and Griffith, M., Characterization of antifreeze activity in Antarctic plants, J. Exp. Bot., 2005, vol. 56, no. 414, pp. 1189–1196.

    Article  CAS  PubMed  Google Scholar 

  28. Taran, N.Yu., Okanenko, O.A., Ozheredova, I.P., et al., Characteristics of the composition of components of lipid and pigment-protein complexes of photosynthetic membranes of Deschampsia antarctica Desv., Dop. Nats. Akad. Navuk Ukr., 2009, vol. 2, pp. 173–178.

    Google Scholar 

  29. Giełwanowska, I., Szczuka, E., Bednara, J., and Górrecki, R., Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats, Ann. Bot., 2005, vol. 96, pp. 1109–1119.

    Article  PubMed Central  PubMed  Google Scholar 

  30. O’Reilly, J.L., Policy and Practice in Antarctica, Pro Quest, 2008.

    Google Scholar 

  31. Xu, Z. and Li, J., in Proc. 11th IAPTCB Congr. “Biotechnology and Sustainable Agriculture 2006 and Beyond,” Beijing, August 13–18, 2006, Dordrecht: Springer-Verlag, 2008.

    Google Scholar 

  32. Alberdi, M. and Corcuera, L.J., Cold acclimation in plants, Phytochemistry, 1991, vol. 30, pp. 3177–3184.

    Article  CAS  Google Scholar 

  33. Kyryachenko, S.S., Kozeretska, I.A., and Rakusa-Suszczewski, S., The genetic and molecular biological enigma of Deschampsia antarctica in Antarctica, Cytol. Genet., 2005, vol. 39, no. 4, pp. 75–80.

    Google Scholar 

  34. NCBI Database. http://www.ncbi.nlm.nih.gov/protein

  35. Bil’danova, L.L., Salina, E.A., and Shumnyi, V.K., Basic properties and characteristics of evolution of antifreeze proteins, Vavilov. Zh. Genet. Selekts., 2012, vol. 16, no. 1, pp. 250–270.

    Google Scholar 

  36. Spangengern, G., et al., WO Patent 049835 A1, 2005. http://www.wipo.int/pctdb/en/wo.jsp?IA=AU2004001633&DISPLAY=DESC

  37. Kalendar, R., Tanskanen, J., Chang, W., et al., Cassandra retrotransposons carry independently transcribed 5S RNA, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 15, pp. 5833–5838.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Greenberg, A.K. and Donoghue, M.J., Molecular systematics and character of evolution in Cryophyllaceae, Taxon, 2011, vol. 60, no. 6, pp. 1637–1652.

    Google Scholar 

  39. Kosakovskaya, I.V., Stressovye belki rastenii (Stress Proteins of Plants), Kyiv, 2008.

    Google Scholar 

  40. Gusta, L.V., Trischuk, R., and Weiser, C.J., Plant cold acclimation: the role of abscisic acid, Plant Growth Reg., 2005, vol. 24, pp. 308–318.

    Article  CAS  Google Scholar 

  41. Voinikov, V.K., Ivanova, T.G., and Rudikovskii, A.V., Heat shock proteins of plants, Fiziol. Rast., 1994, vol. 31, pp. 970–979.

    Google Scholar 

  42. Zuciga, G.E., Zuciga-Feest, A., Inostroza, P., et al., Sugars and enzyme activity in the grass Deschampsia Antarctica, Antarct. Sci., 2003, vol. 15, no. 4, pp. 483–491.

    Article  Google Scholar 

  43. Zuciga-Feest, A., Ort, D.R., Gutierrez, A., et al., Light regulation of sucrose-phosphate synthase activity in the freezing-tolerant grass Deschampsia antarctica, Photosynth. Res., 2005, vol. 83, pp. 75–86.

    Article  Google Scholar 

  44. Philipp, M., Bocher, J., Mattson, O., and Woodell, S.R.J., A quantitative approach to the sexual reproductive biology and population structure of some arctic flowering plants: Dryas integrifolia, Silene acaulis and Ranunculus nivalis, Meddr. Gronland, Biosci., 1990, vol. 34, pp. 1–60.

    Google Scholar 

  45. Hennion, F., Huiskes, A.H.L., Robinson, S., and Convey, P., Physiological traits of organisms in a changing environment, in Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Bergstrom, D.M., Ed., Dordrecht: Springer-Verlag, 2006, pp. 127–157.

    Google Scholar 

  46. Ruhland, C.T., Xiong, F.S., Clark, W.D., and Day, T.A., The influence of ultraviolet-b radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during springtime ozone depletion in Antarctica, Photochem. Photobiol., 2005, vol. 81, no. 5, pp. 1086–1093.

    Article  CAS  PubMed  Google Scholar 

  47. Pereira, B.K., Rosa, R.M., Silva, J., et al., Protective effects of three extracts from Antarctic plants against ultraviolet radiation in several biological models, Photochem. Photobiol., 2009, vol. 96, no. 2, pp. 117–129.

    Article  CAS  Google Scholar 

  48. Kunakh, V.A., Zhebrakovskie chteniya. 3. Ontogeneticheskaya plastichnost’ genoma kak osnova adaptivnosti rastenii (Zherbakov Memorial Conf. “Ontogenetic Genome Plasticity as a Basis of Plant Adaptability”), Kil’chevskii, A.V., Ed., Minsk: Inst. Genet. Tsitol. Nats. Akad. Navuk Belarusi, 2011.

  49. Kunakh, V.A., Somatic cell genome plasticity and adaptability of plants, in Molekulyarnaya i prikladnaya genetika: Sb. nauch. tr (Molecular and Applied Genetics: Collected Scientific Papers), Minsk, 2011, vol. 12, pp. 7–14.

    Google Scholar 

  50. Kunakh, V.A., Mobilni genetichni elementi i plastichnist’ genomu roslin (Transposable Genetic Elements and Genome Plasticity in Plants), Kyiv: Logos, 2013.

    Google Scholar 

  51. Parnikoza, I.Yu., Kozeretskaya, I.A., Miryuta, N.Yu., et al., Environmentally caused interpopulation heterogeneity of Deschampsia antarctica Desv. in maritime Antarctic, in Nauch. konf. “Rossiya v Antarktike,” S.-Peterburg, 12–14 aprelya 2006 g., Tezisy dokladov (Proc. Sci. Conf. “Russia in Antarctic,” St. Petersburg, April 12–14, 2006), St. Petersburg, 2006, pp. 124–125.

    Google Scholar 

  52. Levin, D.A., The Role of Chromosome Changes in Plant Evolution, Oxford: Univ. Press, 2000.

    Google Scholar 

  53. Seledets, V.P. and Probatova, N.S., Ecological range and some problems of differentiation in the family Poaceae in the Russian Far East, in Problemy evolyutsii: Sb. nauch. st (Problems of Evolution: Collected Scientific Papers), Vladivostok: Dal’nauka, 2003, vol. 5, pp. 213–220.

    Google Scholar 

  54. Nuelas, J.P., Sardans, J., Estiarte, M., et al., Evidence of current impact of climate change on life: a walk from genes to the biosphere, Global Change Biol., 2013, vol. 19, pp. 2303–2338.

    Article  Google Scholar 

  55. Purdy, B.G. and Bayer, R.J., Genetic diversity in the tetraploid sand dune endemic Deschampsia mackenzieana and its widespread diploid progenitor D. cespitosa (Poaceae), Am. J. Bot., 1995, vol. 82, pp. 121–130.

    Article  Google Scholar 

  56. Kunakh, V.A., Additional, or B-chromosomes of plants: the origin and biological significance, Visn. Ukr. Tov. Genet. Selekts., 2010, vol. 8, no. 1, pp. 99–139.

    Google Scholar 

  57. Bennett, M.D., Smith, J.B., and Heslop-Harrison, J.S., Nuclear DNA amounts in angiosperms, Proc. R. Soc. Lond., B, 1982, vol. 126, no. 1203, pp. 179–199.

    Article  Google Scholar 

  58. Nkongolo, K.K., Deck, A., and Michael, P., Molecular and cytological analysis of Deschampsia cespitosa population from Northern Ontario (Canada), Genome, 2001, vol. 44, no. 5, pp. 818–825.

    Article  CAS  PubMed  Google Scholar 

  59. Parnikoza, I.Yu., Miryuta, N.Yu., Maidanyuk, D.N., et al., Habitat and leaf cytogenetic characteristics of Deschampsia antarctica Desv. in maritime Antarctic, Polar Sci., 2007, vol. 1, nos. 2/4, pp. 121–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Ozheredova.

Additional information

Original Ukrainian Text © I.P. Ozheredova, I.Yu. Parnikoza, O.O. Poronnik, I.A. Kozeretska, S.V. Demidov, V.A. Kunakh, 2015, published in Tsitologiya i Genetika, 2015, Vol. 49, No. 2, pp. 72–79.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozheredova, I.P., Parnikoza, I.Y., Poronnik, O.O. et al. Mechanisms of antarctic vascular plant adaptation to abiotic environmental factors. Cytol. Genet. 49, 139–145 (2015). https://doi.org/10.3103/S0095452715020085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452715020085

Keywords

Navigation