Skip to main content
Log in

Genetic transformation of moss Ceratodon purpureus by means of polycationic carriers of DNA

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

There is much progress in application of genetic engineering for improving the biological properties of different organisms. Viral and nonviral carriers are used for delivery of genetic material into target cells. Polymeric materials of natural and synthetic origin are the most promising gene delivery agents. These polymers demonstrated high efficiency of DNA delivery into animal cells, although they were not very effective in plant cells. Here, the procedure for genetic transformation of Ceratodon purpureus (Hedw.) Brid. moss protoplasts is described. The method is based on the application of surface-active polymeric carriers of the poly-DMAEM structure and controlled length and charge. This allows obtaining more transient and stable moss transformants per microgram of plasmid DNA when compared with known protocol based on using polyethyleneglycol. It is easier, more convenient, and cheaper than the “gene gun” method. Prospects for further improvement of structure and functional characteristics of new polymeric carriers are considered for delivery of genetic material into plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hefferon, K.L., Transgenic plants and biotechnology, in Encyclopedia of Life Sciences Support Systems, Oxford, UK: Eolss Publishers, 2007. http://www.eolss.net

    Google Scholar 

  2. Barampuram, S. and Zhang, Z.J., Recent advances in plant transformation, Meth. Mol. Biol., 2011, vol. 701, pp. 1–35.

    Article  CAS  Google Scholar 

  3. Chung, S.-M., Vaidya, M., and Tzfira, T., Agrobacterium is not alone: gene transfer to plants by viruses and other bacteria, Trends Plant Sci., 2006, vol. 11, no. 1, pp. 1–4.

    Article  CAS  PubMed  Google Scholar 

  4. Rivera, A.L., Gymez-Lim, M., Fernandez, F., and Loske, A.M., Physical methods for genetic plant transformation, Phys. Life Rev., 2012, vol. 9, no. 3, pp. 308–345.

    Article  PubMed  Google Scholar 

  5. Fu, Y.-Q., Li, L.-H., Wang, P.-W., et al., Delivering DNA into plant cell by gene carriers of ZnS nanoparticles, Chem. Res. Chin. Univ., 2012, vol. 28, no. 4, pp. 672–676.

    CAS  Google Scholar 

  6. Burlaka, O.M., Pirko, Ya.V., Yemets, A.I., and Blume, Ya.B., Genetic transformation of plants by using carbon nanotubes as a new direction in nanobiotehnology, Nanostrukt. Materialoved., 2011, no. 2, pp. 84–101.

    Google Scholar 

  7. Jäger, M., Schubert, S., Ochrimenko, S., et al., Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application, Chem. Soc. Rev., 2012, vol. 41, pp. 4755–4767.

    Article  PubMed  Google Scholar 

  8. Kasyanenko, N.A., Lysyakova, L.A., Dribinskii, B.A., et al., DNA-polymer complexes for gene therapy, Polymer Sci., Ser. C, 2012, vol. 54, no. 1, pp. 57–68.

    Article  CAS  Google Scholar 

  9. Foillard, S., Zuber, G., and Doris, E., Polyethylenimine-carbon nanotube nanohybrids for siRNA-mediated gene silencing at cellular level, Nanoscale Res. Lett., 2011, vol. 3, pp. 1461–1464.

    Article  CAS  Google Scholar 

  10. Zhang, S., Zhao, Y., Zhao, B., and Wang, B., Hybrids of nonviral vectors for gene delivery, Bioconjug. Chem., 2010, vol. 21, no. 6, pp. 1003–1009.

    Article  CAS  PubMed  Google Scholar 

  11. Zaichenko, A., Mitina, N., Shevchuk, O., et al., Development of novel linear, block and branched oligoelectrolytes and functionally targeting nano-particles, Pure Appl. Chem., 2008, vol. 80, no. 11, pp. 2309–2326.

    Article  CAS  Google Scholar 

  12. Finyuk, N.S., Vitak, T.Ya., Mitina, N., et al., Formation of polyplexes between new surface-active comblike polyampholytes and plasmid DNA, Biotekhnologiya, 2012, vol. 5, no. 6, pp. 66–72.

    Google Scholar 

  13. Ficen, S.Z., Guler, Z., Mitina, N., et al., Biophysical study of novel oligoelectrolyte based non-viral gene delivery systems to mammalian cells, J. Gene Med., 2013, vol. 15, no. 5, pp. 193–204.

    Article  CAS  PubMed  Google Scholar 

  14. Filyak, Ye., Finiuk, N., Mitina, N., et al., A novel method for genetic transformation of yeast cells using oligoelectrolyte polymeric nanoscale carriers, BioTechniques, 2013, vol. 54, no. 1, pp. 35–43.

    CAS  PubMed  Google Scholar 

  15. Cuming, A.C., Mosses as model organisms for development, cellular, and molecular biology, in Bryophyte Biology, Goffinet, B. and Shaw, A.J., Eds., Cambridge: Cambridge Univ. Press, 2008, pp. 199–236.

    Google Scholar 

  16. Cove, D., Bezanilla, M., Harries, P., and Quatrano, R., Mosses as a model system for the study of metabolism and development, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 497–520.

    Article  CAS  PubMed  Google Scholar 

  17. Frank, W., Decker, E.L., and Reski, R., Molecular tools to study Physcomitrella patens, Plant Biol., 2005, vol. 7, pp. 220–227.

    Article  CAS  PubMed  Google Scholar 

  18. Demkiv, O.T., Blume, Ya.B., Chaban, Ch.I., and Khorkavtsiv, Ya.D., The growth movements of moss protonemata and arrangement of microtubules, Cell Biol. Int., 1997, vol. 21, no. 12, pp. 860–861.

    Google Scholar 

  19. Rensing, S.A., Beike, A.K., and Land, D., Evolutionary importance of generative polyploidy for genome evolution of haploid-dominant land plants, in Plant Genome Diversity, Vol. 2: Physical Structure, Behaviour and Evolution of Plant Genomes, Wien: Springer-Verlag, 2013, pp. 295–304.

    Google Scholar 

  20. Cove, D.J. and Quatrano, R.S., Agravitropic mutants of the moss Ceratodon purpureus do not complement mutants having a reversed gravitropic response, Plant Cell Environ., 2006, vol. 57, pp. 1379–1387.

    Article  Google Scholar 

  21. Kamisugi, Y., Cuming, A.C., and Cove, D.J., Parameters determining the efficiency of gene targeting in the moss Physcomiterlla patens, Nucleic Acids Res., 2005, vol. 33, no. 19, p. e173.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Liu, Y.C. and Vidali, L., Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens, J. Vis. Exp., 2011, vol. 50, p. 50. doi: 10.3791/2560

    Google Scholar 

  23. Schaefer, D., Zryd, J.P., Knight, C.D., and Cove, D.J., Stable transformation of the moss Physcomitrella patens, Mol. Gen. Cenet., 1991, vol. 226, pp. 418–424.

    CAS  Google Scholar 

  24. Cho, S.H., Quatrano, R.S., and Shin, J.S., Transgenesis of Physcomitrella patens, Transgenic Plant J., 2007, vol. 1, no. 1, pp. 99–103.

    Google Scholar 

  25. Cove, D.J., Perroud, P.F., Charron, A.J., et al., Transformation of moss Physcomitrella patens hametophytes using a biolistic projectile delivery system, Cold Spring Harb. Protoc., 2009, no. 2. doi: 10.1101/pdb.emo115

    Google Scholar 

  26. Rosales-Mendoza, S., Orellana-Escobedo, L., Romero-Maldonado, A., et al., The potential of Physcomitrella patens as a platform for the production of plant-based vaccines, Exp. Rev. Vaccines, 2014, vol. 13, no. 2, pp. 203–212.

    Article  CAS  Google Scholar 

  27. Jing, L., Wenjing, Q., Dan, S., and Zhengquan, H., Genetic transformation of moss plant, Afr. J. Biotechnol., 2013, vol. 12, no. 3, pp. 227–232.

    Google Scholar 

  28. Cove, D.J., Perroud, P.-F., Charron, A.J., et al., The moss Physcomitrella patens. A novel model system for plant development and genomic studies, in Emerging Model Organisms, a Laboratory Manual, New York: Cold Spring Harbor, 2009, vol. 1, pp. 69–104.

    CAS  Google Scholar 

  29. Knight, C.D., Cove, D.J., Cuing, A.C., and Quatrano, R.S., Moss gene technology, in Molecular Plant Biology, Gilmartin, P.M. and Bowler, C., Eds., Oxford: Univ. Press, 2002, vol. 2.

  30. Zou, W., Liu, C., Chen, Z., and Zhang, N., Preparation and characterization of cationic PLA-PEG nanoparticles for delivery of plasmid DNA, Nanoscale Res. Lett., 2009, vol. 4, no. 9, pp. 982–992.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zeidler, M., Hartmann, E., and Hughes, J., Transgene expression in the moss Ceratodon purpureus, J. Plant Physiol., 1999, vol. 154, nos. 5/6, pp. 641–650.

    Article  CAS  Google Scholar 

  32. McDaniel, S.F., Neubig, K.M., Payton, A.C., et al., Recent gene-capture on the UV sex chromosomes of the moss Ceratodon pur pureus, Evolution, 2013, vol. 67, no. 10, pp. 2811–2822.

    PubMed Central  PubMed  Google Scholar 

  33. Trouiller, B., Charlot, F., Choinard, S., et al., Comparison of gene targeting efficiencies in two mosses suggests that it is a conserved feature of bryophyte transformation, Biotechnol. Lett., 2007, vol. 29, no. 10, pp. 1591–1598.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Stoika.

Additional information

Original Ukrainian Text © N.S. Finiuk, A.Y. Chaplya, N.Y. Mitina, N.M. Boiko, O.V. Lobachevska, O.S. Miahkota, A.I. Yemets, Ya.B. Blume, O.S. Zaichenko, R.S. Stoika, 2014, published in Tsitologiya i Genetika, 2014, Vol. 48, No. 6, pp. 3–10.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finiuk, N.S., Chaplya, A.Y., Mitina, N.Y. et al. Genetic transformation of moss Ceratodon purpureus by means of polycationic carriers of DNA. Cytol. Genet. 48, 345–351 (2014). https://doi.org/10.3103/S0095452714060048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452714060048

Keywords

Navigation