Skip to main content
Log in

Thermodynamic properties of a photon gas confined in hypothetical arbitrary-shaped perfectly reflecting nano-scale geometries

  • Theoretical and Mathematical Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

In nano scale, thermodynamic properties of gases show difference from those in macro scales. One of the reasons of this difference is the quantum size effects (QSE), which become significant when compared with the thermal de Broglie wavelength of particles to the characteristic length of the system. In this study, thermodynamic behavior of a photon gas confined in a nanoscale domain is examined in terms of QSE. It is obtained that due to quantum size effects the global thermodynamic properties of a photon gas confined in a nano scale domain are different than those in macro scale. The matter of QSE on thermodynamics of substances at micro/nano scale is relatively a new research area and the new findings might lead to significant new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. L. Wolf, Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience, 2nd ed. (Wiley-VCH, Weinheim, 2006).

    Book  Google Scholar 

  2. Handbook of Nanoscience, Engineering, and Technology, Ed. W. A. Goddard III, D. W. Brenner, S. E. Lyshevski, and G. J. Iafrate (CRC, Boca Raton, 2003).

  3. J. W. Kang, K. O. Song, O. K. Kwon, and H. J. Hwang, Nanotechnology 16, 2670 (2005).

    Article  ADS  Google Scholar 

  4. J. W. Kang and H. J. Hwang, Nanotechnology 15, 1633 (2004).

    Article  ADS  Google Scholar 

  5. A. H. Epstein, J. Eng. Gas Turbines Power 126, 205 (2004).

    Article  Google Scholar 

  6. M. Hoummady and H. Fujita, Nanotechnology 10, 29 (1999).

    Article  ADS  Google Scholar 

  7. L. Filipponi and D. Sutherland, NANOTECHNOLOGIES: Principles, Applications, Implications and Handson Activities (Publications Office of the European Union, Luxembourg, 2012).

    Google Scholar 

  8. A. Sisman and G. Babac, Continuum Mech. Thermodyn. 24, 339 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  9. Z. F. Ozturk, A. Sisman, and C. Firat, Int. J. Thermodyn. 14, 163 (2011).

    Google Scholar 

  10. C. Firat, A. Sisman, and Z. F. Ozturk, Int. J. Thermodyn. 14, 155 (2011).

    Google Scholar 

  11. C. Firat, A. Sisman, and Z. F. Ozturk, Energy 35, 814 (2010).

    Article  Google Scholar 

  12. Z. F. Ozturk and A. Sisman, Phys. Scr. 80, 065402 (2009).

    Article  ADS  Google Scholar 

  13. C. Firat and A. Sisman, Phys. Scr. 79, 065002 (2009).

    Article  ADS  Google Scholar 

  14. A. Sisman, Z. F. Ozturk, and C. Firat, Phys. Lett. A 362, 16 (2007).

    Article  ADS  Google Scholar 

  15. W. S. Dai and M. Xie, J. Math. Phys. 48, 123302 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  16. W. S. Dai and M. Xie, Phys. Rev. E 70, 016103 (2004).

    Article  ADS  Google Scholar 

  17. W. S. Dai and M. Xie, Phys. Lett. A 311, 340 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  18. G. Gutierrez and M. Yanez, Am. J. Phys. 65, 739 (1997).

    Article  ADS  Google Scholar 

  19. M. I. Molina, Am. J. Phys. 64, 503 (1996).

    Article  ADS  Google Scholar 

  20. H. Pang, W. S. Dai, and M. Xie, J. Phys. A: Math. Gen. 39, 2563 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Sisman, Phys. J. Phys. A: Math. Gen. 37, 11353 (2004).

    Article  ADS  Google Scholar 

  22. A. Sisman and I. Müller, Phys. Lett. A 320, 360 (2004).

    Article  ADS  Google Scholar 

  23. W. S. Dai and M. Xie, Phys. Rev. E 70, 016103 (2004).

    Article  ADS  Google Scholar 

  24. R. K. Pathria, Statistical Mechanics (Butterworth-Heinemann, Woburn, 1996).

    MATH  Google Scholar 

  25. H. Weyl, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 1911, 110 (1911).

    Google Scholar 

  26. D. J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, New Jersey, 1995).

    MATH  Google Scholar 

  27. G. D. J. Phillies, Elementary Lectures in Statistical Mechanics (Springer-Verlag, Berlin, 2000).

    Book  MATH  Google Scholar 

  28. T. L. Hill, An Introduction to Statistical Thermodynamics (Addison-Wesley, Reading, 1960).

    Google Scholar 

  29. J. Kuneš, Dimensionless Physical Quantities in Science and Engineering (Elsevier, London, 2012).

    Google Scholar 

  30. H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals (Elsevier, London, 2012).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coskun Firat.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firat, C. Thermodynamic properties of a photon gas confined in hypothetical arbitrary-shaped perfectly reflecting nano-scale geometries. Moscow Univ. Phys. 71, 70–74 (2016). https://doi.org/10.3103/S0027134916010045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134916010045

Keywords

Navigation