Skip to main content
Log in

On the choice of physically realizable parameters when studying the dynamics of spherical and ellipsoidal rigid bodies

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The paper presents necessary and sufficient conditions whose must be satisfied by the main geometric and dynamic parameters of spherical, ellipsoidal, or parabolic rigid bodies for their physical realization. The main parameters are both the geometric characteristics of the body boundary (radius of the sphere, semiaxes of the ellipsoid, principal curvatures at the vertex, and the paraboloid center location on its symmetry axis) and the body mass and dynamic characteristics (body mass, displacement of the body center of mass from the center on the paraboloid symmetry axis or from the sphere or ellipsoid center of symmetry, the orientation of the principal central axes of inertia with respect to the principal geometric axes of the shell, and the values of the principal central moments of inertia). The physical realization is understood as the existence of an actual distribution of positive masses inside the sphere, ellipsoid, or paraboloid for which the above-listed characteristics of the body are equal to the chosen ones. Several examples from earlier-published papers dealing with the dynamics of spherical, ellipsoidal, or parabolic bodies with physically unrealizable parameters are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Magnus, Kreisel. Theorie und Anwendungen (Springer, Berlin, 1971; Mir, Moscow, 1974).

    Google Scholar 

  2. C. M. Braams, “On the Influence of Friction on the Motion of a Top,” Physica 18 (8–9), 503–514 (1952).

  3. E. J. Routh, Dynamics of Systems of Rigid Bodies (Dover Publ., New York, 1955; Nauka, Moscow, 1983).

    MATH  Google Scholar 

  4. A. V. Karapetyan and A. S. Kuleshov, “Steady Motions of Nonholonomic Systems,” in Nonholonomic Dynamic Systems. Integrability, Chaos, Strange Attractors, Collected Papers (Inst. Komp’yuter Issled., Moscow–Izhevsk, 2002), pp. 247–295 [in Russian].

    Google Scholar 

  5. A. V. Karapetyan and A. S. Kuleshov, “Methods for Studying Stability and Bifurcation of Steady Motions of Conservative Nonholonomic Systems,” in Problems of Mechanics: Collection of Papers Dedicated to A. Yu. Ishlinskii on the Occasion of His 90th Birth Day (Fizmatlit, Moscow, 2003), pp. 429–464 [in Russian].

    Google Scholar 

  6. A. S. Kuleshov, “To the Top Dynamics on a Rough Surface,” in Problems of Studying Stability and Stabilization of Motion, Collected Papers (VTs RAN, Moscow, 1999), pp. 130–140 [in Russian].

    Google Scholar 

  7. A. V. Borisov and I. S. Mamaev, “Strange Attractors in Dynamics of Celtic Stones,” in Nonholonomic Dynamic Systems. Integrability, Chaos, Strange Attractors, Collected Papers (Inst. Komp’yuter Issled., Moscow–Izhevsk, 2002), pp. 296–320 [in Russian].

    Google Scholar 

  8. R. E. Lindberg and R. W. Longman, “On the Dynamic Behavior of the Wobblestone,” Acta Mechanica 49, 81–94 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. K. Chochchi, B. Malengie, B. Langerok, and B. Grimonpre, “To Construction of a Prototype of Spherical Chinese Top,” Nelin. Din. 8 (2), 391–425 (2012).

    Google Scholar 

  10. I. A. Bizyaev, “Nonintegrability and Obstructions to the Hamiltonianization of a Nonholonomic Chaplygin Top,” Dokl. Ross. Akad. Nauk 458 (4), 398–401 (2014) [Dokl. Math. (Engl. Transl.) 90 (2), 631–634 (2014)].

    MathSciNet  MATH  Google Scholar 

  11. A. V. Borisov, A. O. Kazakov, and I. R. Sataev, “The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top,” Regular and Chaotic Dynamics 19 (6), 718–733 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. S. O’Brien and J. L. Synge, “The Instability of the Tippe-Top Explained by Sliding Friction,” Proc. Roy. Irish Acad. Sec. A 56 (3), 23–35 (1954).

    MathSciNet  MATH  Google Scholar 

  13. A. A. Kilin, “The Dynamics of Chaplygin Ball: the Quantitative and Computer Analysis,” Regular and Chaotic Dynamics 6 (3), 291–306 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A. Yu. Moskvin, “Chaplygin Ball with Gyrostat: Singular Solutions,” Nelin. Din. 5 (3), 345–356 (2009).

    Article  Google Scholar 

  15. A. V. Borisov and I. S. Mamaev, “Obstacle to the Reduction of Nonholonomic Systems to the Hamiltonian Form,” Dokl. Ross. Akad. Nauk 387 (6), 764–766 (2002) [Dokl. Phys. (Engl. Transl.) 47 (12), 892–894 (2002)].

    MathSciNet  Google Scholar 

  16. A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “Property of Being Hamiltonian and Integrability of Suslov Problem,” Nelin. Din. 6 (1), 127–142 (2010).

    Article  Google Scholar 

  17. A. Yu. Moskvin, “Rubber Ball on a Plane: Critical Solutions,” Nelin. Din. 6 (2), 345–358 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Rozenblat.

Additional information

Original Russian Text © G.M. Rozenblat, 2016, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2016, No. 4, pp. 53–63.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozenblat, G.M. On the choice of physically realizable parameters when studying the dynamics of spherical and ellipsoidal rigid bodies. Mech. Solids 51, 415–423 (2016). https://doi.org/10.3103/S0025654416040051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654416040051

Keywords

Navigation