Skip to main content
Log in

SOI nanowire transistor for detection of D-NFATc1 molecules

  • Fundamental Problems of Biosensorics on the Basis of Nanoheterostructures
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Nanowire (NW) detection is one of the fast and highly sensitive methods. An NW biosensor based on silicon-on-insulator (SOI) structures are used in the reported study for real-time label-free biospecific detection of the NFATc1 (D-NFATc1) cancer marker. For this purpose, the SOI NWs are functionalized with NFATc1 aptamers used as macromolecular probes. It is demonstrated that such a biosensor can ensure a detection limits up to 10−15 M, which is comparable with the sensitivity ensured by an NW biosensor with immobilized antibodies used as macromolecular probes. The results of this study demonstrate that such approaches to the development of sensor elements for highly sensitive diagnostics of diseases are really promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. D. Ivanov, N. S. Bukharina, P. A. Frantsuzov, et al., “AFM Study of Cytochrome CYP102A1 Oligomeric State,” Soft Matter. 8(17), 4602–4608 (2012).

    Article  ADS  Google Scholar 

  2. Yu. D. Ivanov, P. A. Frantsuzov, A. Zollner, et al., “Atomic Force Microscopy Study of Protein-Protein Interactions in the Cytochrome CYP11A1 (P450scc)-Containing Steroid Hydroxylase System,” Nanoscale Res. Lett. 6(1), 54–67 (2011).

    ADS  Google Scholar 

  3. Yu. D. Ivanov, P. A. Frantsuzov, V. A. Bykov, et al., “Comparative Interactions of PdR by Usual and Ultrafine Atomic Force Microscopy,” Anal. Meth. 2(6), 688–693 (2010).

    Article  Google Scholar 

  4. Y. D. Ivanov and A. I. Archakov, “Application of AFM and Optical Biosensor for Investigation of Complexes Formed in P450-Containing Monooxygenase Systems,” Biochim. Biophys. Acta 1814(1), 102–110 (2011).

    Article  Google Scholar 

  5. A. I. Archakov and Y. D. Ivanov, “Optical Biosensor and Scanning Probe Microscopy Studies of Cytochrome P450 Interactions with Redox Partners and Phospholipid Layers,” Methods Enzymology 357(Pt. C), 94–103 (2002).

    Article  Google Scholar 

  6. A. M. Armani, R. P. Kulkarni, S. E. Fraser, et al., “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).

    Article  ADS  Google Scholar 

  7. H. R. Sim, A. W. Warkb, and H. J. Lee, “Attomolar Detection of Protein Biomarkers Using Bio-Functionalized Gold Nanorods with Surface Plasmon Resonance,” Analyst. 135(10), 2528–2532 (2010).

    Article  ADS  Google Scholar 

  8. L. Rodríguez-Lorenzo, R. de la Rica, R. A. Álvarez-Puebla, et al., “Plasmonic Nanosensors with Inverse Sensitivity by means of Enzyme-Guided Crystal Growth,” Nature Materials 6(11), 604–607 (2012).

    Article  ADS  Google Scholar 

  9. G. Zheng, F. Patolsky, Y. Cui, et al., “Multiplexed Electrical Detection of Cancer Markers with Nanowire Sensor Arrays,” Nature Biotechnol. 23(10), 1294–1301 (2005).

    Article  Google Scholar 

  10. Yu. D. Ivanov, T. O. Pleshakova, A. F. Kozlov, et al., “SOI Nanowire for the High-Sensitive Detection of HBsAg and a-Fetoprotein,” Lab on a Chip 12(23), 5104–5111 (2012).

    Article  Google Scholar 

  11. F. Patolsky, G. F. Zheng, O. Hayden, et al., “Electrical Detection of Single Viruses,” Proc. USA National Acad. Sci. 101(39), 14017–14022 (2004).

    Article  ADS  Google Scholar 

  12. N. Elfstrom, R. Juhasz, I. Sychugov, et al., “Surface Charge Sensitivity of Silicon Nanowires: Size Dependence,” Nano Lett. 7(9), 2608–2612 (2007).

    Article  ADS  Google Scholar 

  13. J. Hahm and C. M. Lieber, “Direct Ultrasensitive Electrical Detecion of DNA and DNA Sequence Variations Using Nanowire Nanosensors,” Nano Lett. 4(1), 51–54 (2004).

    Article  ADS  Google Scholar 

  14. T.-S. Pui, A. Agarwal, F. Ye, et al., “Ultra-Sensitive Detection of Adipocytokines Secreted from Adipocytes with CMOS-Compatible Silicon Nanowire Arrays,” Nanoscale 1(1), 159–163 (2009).

    Article  ADS  Google Scholar 

  15. S. Carrara, D. Sacchetto, M. A. Doucey, et al., “Memristive-Biosensors: A new Detection Method by Using Nanofabricated Memristors,” Sens. Actuators B 171–172(1), 449–457 (2012).

    Article  Google Scholar 

  16. E. N. Brody and L. Gold, “The Use of Aptamers in Large Arrays for Molecular Diagnostics,” Mol. Diagn. 4(4), 381–388 (1999).

    Article  Google Scholar 

  17. R. Y. Lai, K. W. Plaxco, and A. J. Heeger, “Aptamer-Based Electrochemical Detection of Picomolar Platelet-Derived Growth Factor Directly in Blood Serum,” Anal. Chem. 79(1), 229–233 (2007).

    Article  Google Scholar 

  18. E. W. Ng, D. T. Shima, P. Calais, et al., “Pegaptanib, a Targeted Anti-VEGF Aptamer for Ocular Vascular Disease,” Nat. Rev. Drug Discov. 5(2), 123–132 (2006).

    Article  Google Scholar 

  19. T. An, K. S. Kim, S. K. Hahn, and G. B. Lim, “Real-Time, Step-Wise, Electrical Detection of Protein Molecules Using Dielectrophoretically Aligned SWNT-Film FET Aptasensors,” Lab on a Chip 10(16), 2052–2056 (2010).

    Article  Google Scholar 

  20. X. Luo, I. Lee, J. Huang, et al., “Ultrasensitive Protein Detection Using an Aptamer — Functionalized Single Polyaniline Nanowire,” Chem. Commun. 47(22), 6368–6370 (2011).

    Article  Google Scholar 

  21. K. S. Kim, H.-S. Lee, L.-A. Yang, et al., “The Fabrication, Characterization and Application of Aptamer — Functionalized Si-Nanowire FET Biosensors,” Nanotechnol. 20(23), 235501 (2009).

    Article  ADS  Google Scholar 

  22. G. K. Yiu, A. Kaunisto, Y. R. Chin, and A. Toker, “NFAT Promotes Carcinoma Invasive Migration through Glipican-6,” Biochem. J. 440(1), 157–166 (2001).

    Article  Google Scholar 

  23. A. Jolma, T. Kivioja, J. Toivonen, et al., “Multiplexed Massively Parallel SELEX for Characterization of Human Transcription Factor Binding Specificities,” Genome Res. 20(6), 861–873 (2010).

    Article  Google Scholar 

  24. O. V. Naumova, B. I. Fomin, D. A. Nasimov, et al., “SOI Nanowires as Sensors for Charge Detection,” Semiconductor Sci. Technol. 25(5), 055004 (2010).

    Article  ADS  Google Scholar 

  25. O. V. Naumova, B. I. Fomin, L. N. Safronov, et al., “Silicon Nanowire Transistors for Electron Biosensors,” Avtometriya 45(4), 6–11 (2009) [Optoelectron., Instrum. Data Process. 45 (4), 287–291 (2009)].

    Google Scholar 

  26. M.-H. Lee, D.-H. Lee, S.-W. Jung, et al., “Measurements of Serum C-Reactive Protein Levels in Patients with Gastric Cancer and Quantification Using Silicon Nanowire Arrays,” Nanomed.-Nanotechnol. Biol. Med. 6(1), 78–83 (2010).

    Article  MathSciNet  Google Scholar 

  27. K. Yamada, S. Yoshii, S. Kumagai, et al., “High-Density and Highly Surface Selective Adsorption of Protein-Nanoparticle Complexes by Controlling Electrostatic Interaction,” Jap. J. Appl. Phys. 45(5a), 4259–4264 (2006).

    Article  ADS  Google Scholar 

  28. Yu. D. Ivanov, V. V. Danichev, T. O. Pleshakova, et al., “Irreversible Chemical AFM Based Fishing for Detection of Low-Copied Proteins,” Biomed. Chem. 7(1), 46–61 (2013).

    Google Scholar 

  29. ExPASy: SIB Bioinformatics Resource Portal, http://www.expasy.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Ivanov.

Additional information

Original Russian Text © Yu.D. Ivanov, T.O. Pleshakova, A.F. Kozlov, K.A. Mal’sagova, N.V. Krokhin, A.L. Kaisheva, I.D. Shumov, V.P. Popov, O.V. Naumova, B.I. Fomin, D.A. Nasimov, A. L. Aseev, A.I. Archakov, 2013, published in Avtometriya, 2013, Vol. 49, No. 5, pp. 119–126.

About this article

Cite this article

Ivanov, Y.D., Pleshakova, T.O., Kozlov, A.F. et al. SOI nanowire transistor for detection of D-NFATc1 molecules. Optoelectron.Instrument.Proc. 49, 520–525 (2013). https://doi.org/10.3103/S8756699013050142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699013050142

Keywords

Navigation