Skip to main content
Log in

Nonlinear thermodynamic model of boundary friction

  • Published:
Journal of Friction and Wear Aims and scope Submit manuscript

Abstract

Melting of an ultrathin lubricant film confined between two atomically flat surfaces is studied. An excess volume parameter is introduced, the value of which is related to the presence of defects and inhomogeneities in the lubricant. Via minimization of the free energy, the Landau-Khalatnikov kinetic equation is obtained for this parameter. The kinetic equation is also used for relaxation of elastic strains, which in its explicit form contains the relative shear velocity of the rubbing surfaces. With the numerical solution of these equations, a phase diagram with domains corresponding to the sliding and dry stationary friction regimes is built at a fixed shear velocity. A simple tribological system is used to demonstrate that in the dynamic case, three friction regimes can occur, namely, dry, stick-slip, and sliding friction. It is shown that a lubricant can melt when the shear velocity exceeds a critical value and with elevation of its temperature. The dependence of the dynamic friction force on the pressure applied to the surfaces, the temperature of the lubricant, and the shear velocity is considered. It is shown that growth of pressure leads to the forced ordering and solidification of the lubricant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Persson, B.N.J., Sliding Friction. Physical Principles and Applications, Berlin: Springer, 2000.

    MATH  Google Scholar 

  2. Persson, B.N.J., Albohr, O., Tartaglino, U., et al., On the Nature of Surface Roughness with Application to Contact Mechanics, Sealing, Rubber Friction and Adhesion, J. Phys.: Condens. Matter, 2005, vol. 17, pp. R1–R62.

    Article  ADS  Google Scholar 

  3. Yoshizawa, H., Chen, Y.-L., and Israelachvili, J., Fundamental Mechanisms of Interfacial Friction. 1. Relation between Adhesion and Friction, J. Phys. Chem., 1993, vol. 97, pp. 4128–4140; Yoshizawa H. and Israelachvili J. Fundamental Mechanisms of Interfacial Friction. 2. Stick-Slip Friction of Spherical and Chain Molecules, J. Phys. Chem., 1993, vol. 97, pp. 11300–11313.

    Article  Google Scholar 

  4. Smith, E.D., Robbins, M.O., and Cieplak, M., Friction on Adsorbed Monolayers, Phys. Rev. B: Condens. Matter, 1996, vol. 54, pp. 8252–8260.

    Article  ADS  Google Scholar 

  5. Israelachvili, J.N. and Adams, G.E., Measurement of Forces between Two Mica Surfaces in Aqueous Electrolyte Solutions in the Range 0–100 Nm, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Cond. Phases, 1978, vol. 74, pp. 975–1001.

    Google Scholar 

  6. Pashley, R.M., Hydration Forces between Mica Surfaces in Aqueous Electrolyte Solutions, J. Colloid Interface Sci., 1981, vol. 80, pp. 153–162.

    Article  Google Scholar 

  7. Pashley, R.M., DLVO and Hydration Forces between Mica Surfaces in Li+, Na+, K+, and Cs+ Electrolyte Solutions: A Correlation of Double-Layer and Hydration Forces with Surface Cation Exchange Properties, J. Colloid Interface Sci., 1981, vol. 83, pp. 531–546.

    Article  Google Scholar 

  8. Horn, R.G., Smith, D.T., and Haller, W., Surface Forces and Viscosity of Water Measured between Silica Sheets, Chem. Phys. Lett., 1989, vol. 162, pp. 404–408.

    Article  ADS  Google Scholar 

  9. Horn, R.G., Clarke, D.R., and Clarkson, M.T., Direct Measurement of Surface Forces between Sapphire Crystals in Aqueous Solutions, J. Mater. Res., 1988, vol. 3, pp. 413–416.

    Article  ADS  Google Scholar 

  10. Ploehn, H.J. and Russel, W.B., Interactions between Colloidal Particles and Soluble Polymer, Adv. Chem. Eng., 1990, vol. 15, pp. 137–228.

    Article  Google Scholar 

  11. Israelachvili, J.N., Intermolecular and Surface Forces: with Applications to Colloidal and Biological Systems, New York: Academic Press, 1991.

    Google Scholar 

  12. Israelachvili, J.N. and McGuiggan, P.M., Forces between Surfaces in Liquids, Science, 1988, vol. 241, pp. 795–800.

    Article  ADS  Google Scholar 

  13. Lee, C.S. and Belfort, G., Changing Activity of Ribonuclease A during Adsorption: A Molecular Explanation, Proc. NAS USA, 1989, vol. 86, pp. 8392–8396.

    Article  ADS  Google Scholar 

  14. Parker, J.L. and Christenson, H.K., Measurements of the Forces between a Metal Surface and Mica across Liquids, J. Chem. Phys., 1988, vol. 88, pp. 8013–8014.

    Article  ADS  Google Scholar 

  15. Popov, V.L., Thermodynamics and Kinetics of Shear-Induced Melting of a Thin Layer of Lubricant Confined between Solids, Zh. Tekhn. Fiz., 2001, vol. 71, no. 5, pp. 100–110 [Techn. Phys. (Engl. Transl.), vol. 46, no. 5, pp. 605–615].

    Google Scholar 

  16. Carlson, J.M. and Batista, A.A., Constitutive Relation for the Friction between Lubricated Surfaces, Phys. Rev. E, 1996, vol. 53, pp. 4153–4165.

    Article  ADS  Google Scholar 

  17. Khomenko, A.V. and Yushchenko, O.V., Solid-Liquid Transition of Ultrathin Lubricant Film, Phys. Rev. E, 2003, vol. 68, p. 036110.

    Article  ADS  Google Scholar 

  18. Khomenko, A.V. and Lyashenko, I.A., Temperature Dependence Effect of Viscosity on Ultrathin Lubricant Film Melting, Cond. Matt. Phys., 2006, vol. 9, pp. 695–702.

    Google Scholar 

  19. Filippov, A.E., Klafter, J., and Urbakh, M., Friction through Dynamical Formation and Rupture of Molecular Bonds, Phys. Rev. Lett., 2004, vol. 92, p. 135503.

    Article  ADS  Google Scholar 

  20. Tshiprut, Z., Filippov, A.E., and Urbakh, M., Tuning Diffusion and Friction in Microscopic Contacts by Mechanical Excitations, Phys. Rev. Lett., 2005, vol. 92, p. 016101.

    Article  ADS  Google Scholar 

  21. Braun, O.M. and Naumovets, A.G., Nanotribology: Microscopic Mechanisms of Friction, Surf. Sci. Rep., 2006, vol. 60, pp. 79–158.

    Article  ADS  Google Scholar 

  22. Khomenko, A.V. and Prodanov, N.V., Molecular Dynamics Simulations of Ultrathin Water Film Confined between Flat Diamond Plates, Cond. Matt. Phys., 2008, vol. 11, pp. 615–626.

    Google Scholar 

  23. Brener, E.A. and Marchenko, V.I., Frictional Shear Cracks, Pis’ma Zh. Eksp. Teor. Fiz., 2002, vol. 76, pp. 246–249 [JETP Lett. (Engl. Transl.), vol. 76, no. 4, pp. 211–214.

    Google Scholar 

  24. Khomenko, A.V. and Lyashenko, I.A., Stochastic Theory of Ultrathin Lubricant Film Melting in the Stick-Slip Regime, Zh. Tekhn. Fiz., 2005, vol. 75, no. 11, pp. 17–25 [Techn. Phys. (Engl. Transl.), vol. 50, no. 11, pp. 1408–1416].

    Google Scholar 

  25. Khomenko, A.V. and Lyashenko, I.A., Melting of Ultrathin Lubricant Film due to Dissipative Heating of Friction Surfaces, Zh. Tekhn. Fiz., 2007, vol. 77, no. 9, pp. 138–141 [Techn. Phys. (Engl. Transl.), vol. 52, no. 9, pp. 1239–1243].

    Google Scholar 

  26. Khomenko, A.V., Lyashenko, I.A., and Borisyuk, V.M., Self-Similar Phase Dynamics of Boundary Friction, Ukr. Fiz. Zh., 2009, vol. 54, no. 11, pp. 1142–1151 [Ukrainian Journal of Physics (Engl. Transl.), vol. 54, pp. 1139–1148].

    Google Scholar 

  27. Khomenko, A.V., Lyashenko, I.A., and Borisyuk, V.N., Multifractal Analysis of Stress Time Series during Ultrathin Lubricant Film Melting, Fluct. Noise Lett., 2010, vol. 9, pp. 19–35.

    Article  Google Scholar 

  28. Khomenko, A.V. and Lyashenko, I.A., Phase Dynamics and Kinetics of Thin Lubricant Film Driven by Correlated Temperature Fluctuations, Fluct. Noise Lett., 2007, vol. 7, pp. L111–L133.

    Article  Google Scholar 

  29. Demirel, A.L. and Granick, S., Transition from Static to Kinetic Friction in a Model Lubricating System, J. Chem. Phys., 1998, vol. 109, pp. 6889–6897.

    Article  ADS  Google Scholar 

  30. Reiter, G., Demirel, A.L., Peanasky, J., et al., Stick to Slip Transition and Adhesion of Lubricated Surfaces in Moving Contact, J. Chem. Phys., 1994, vol. 101, pp. 2606–2615.

    Article  ADS  Google Scholar 

  31. Israelachvili, J., Adhesion Forces between Surfaces in Liquids and Condensable Vapors, Surf. Sci. Rep., 1992, vol. 14, pp. 109–159.

    Article  ADS  Google Scholar 

  32. Khomenko, A.V. and Lyashenko, I.A., Hysteresis Phenomena during Melting of an Ultrathin Lubricant Film, Fiz. Tver. Tela, 2007, vol. 49, no. 5, pp. 886–890 [Phys. Solid State (Engl. Transl.), vol. 49, no. 5, pp. 936–940].

    Google Scholar 

  33. Khomenko, A.V. and Lyashenko, I.A., Hysteresis Phenomena at Ultrathin Lubricant Film Melting in the Case of First-Order Phase Transition, Phys. Lett. A, 2007, vol. 366, pp. 165–173.

    Article  ADS  Google Scholar 

  34. Khomenko, A.V. and Lyashenko, I.A., Phase Dynamics of Thin Film between Solid Surfaces at the Strain Defect of Shear Modulus, Zh. Fiz. Dosl., 2007, vol. 11, pp. 268–278 [J. Phys. Studies (Engl. Transl.), vol. 11, pp. 268–278 (in Ukrainian)].

    Google Scholar 

  35. Khomenko, A.V. and Lyashenko, I.A., Periodic Intermittent Regime of a Boundary Flow, Zh. Tekhn. Fiz., 2010, vol. 80, no. 1, pp. 27–33 [Techn. Phys. (Engl. Transl.), vol. 55, no. 1, pp. 26–32].

    Google Scholar 

  36. Metlov, L.S., Thermodynamics of Severe Plastic Strains, Metallofiz. Noveish. Tekhnol., 2007, vol. 29, pp. 335–345.

    Google Scholar 

  37. Metlov, L.S., Thermodynamics of Nonequilibrium Processes in Application to Severe Plastic Strain, Izv. RAN. Ser. Fiz., 2008, vol. 72, no. 9, pp. 1353–1357 [Bull. Russ. Acad. Sci.: Phys. (Engl. Transl.), vol. 72, no. 9, pp. 1283–1287].

    Google Scholar 

  38. Khomenko, A.V., Lyashenko, I.A., and Metlov, L.S., Phase Dynamics and Kinetics of Intensive Plastic Strain, Metall. Noveish. Tekhnol., 2008, vol. 30, pp. 859–872.

    Google Scholar 

  39. Metlov, L.S., Formation of Internal Structure of Solids under Severe Load, Phys. Rev. E, 2010, vol. 81, p. 051121.

    Article  ADS  Google Scholar 

  40. Thompson, P.A., Grest, G.S., and Robbins, M.O., Phase Transitions and Universal Dynamics in Confined Films, Phys. Rev. Lett., 1992, vol. 68, pp. 3448–3451.

    Article  ADS  Google Scholar 

  41. Gee, M.L., McGuiggan, P.M., and Israelachvili, J.N., Liquid to Solidlike Transitions of Molecularly Thin Films under Shear, J. Chem. Phys., 1990, vol. 93, pp.1895–1906.

    Article  ADS  Google Scholar 

  42. Kachanov, L.M., Osnovy teorii plastichnosti (Foundations of the Theory of Plasticity), Moscow: Nauka, 1969; Amsterdam: North-Holland Publ. Com., 1971.

    Google Scholar 

  43. Landau, L.D. and Lifshits, E.M., Teoriya uprugosti (Course of theoretical physics, vol.7: Theory of elasticity), Moscow: Nauka, 2007. 3rd ed. New York: Pergamon Press. 1986.

    Google Scholar 

  44. Luengo, G., Israelachvili, J., and Granick, S., Generalized Effects in Confined Fluids: New Friction Map for Boundary Lubrication, Wear, 1996, vol. 200, pp. 328–335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Lyashenko.

Additional information

Original Russian Text © I.A. Lyashenko, A.V. Khomenko, L.S. Metlov, 2011, published in Trenie i Iznos, 2011, Vol. 32, No. 2, pp. 157–170.

About this article

Cite this article

Lyashenko, I.A., Khomenko, A.V. & Metlov, L.S. Nonlinear thermodynamic model of boundary friction. J. Frict. Wear 32, 113–123 (2011). https://doi.org/10.3103/S1068366611020061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068366611020061

Keywords

Navigation