Skip to main content
Log in

On transient layers as new phase domains in composite materials

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

A model describing the development of transient layers as new phase domains in compositematerials is constructed under the assumption that the transient layers around (nano)particles are layers of the matrix material changed by the phase transformation and increase the effective volume of inclusions which become compound and consist of the nucleus (original particle) and the shell (transient layer of the new phase). As a result, the inclusion volume fraction increases, which, in turn, increases the particle influence efficiency. An example of spherical particles is used to consider the new phase development around an isolated particle and then, in the effective field approximation, around interacting particles in the composite material. The dependence of the compound inclusion radius on the external (averaged) strain is obtained for isotropic phases. Stability of the interphase boundaries depending on the parameters of the original inclusion material and the matrix phase materials is studied. The energy variations and the stress redistribution owing to the development of the new phase domains are considered in detail. It is shown that, in the case of an isolated inclusion, the development of a new phase may lead to a local energy decrease near the inclusions and, as a consequence, to a decrease in the stress concentration. At the same time, the formation of transient layers due to the phase transformation can result in an increase in the bulk modulus of elasticity as the effective shear modulus decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. George, K. T. Kashyap, R. Rahul, and S. Yamdagni, “Strengthening in Carbon Nanotube/Aluminum (CNT/Al) Composites,” Scripta Mater. 53(10), 1159–1163 (2005).

    Article  Google Scholar 

  2. X.-L. Xie, Y.-W. Mai, and X.-P. Zhoui, “Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix; AReview,” Mat. Sci. Engng 49(4), 89–112 (2005).

    Article  Google Scholar 

  3. E. T. Thostenson, Z. Ren, T.-W. Choui, “Advance in the Science and Technology of Carbon Nanotubes and Their Composites: A Review,” Comp. Sci. Technol. 61(13), 1899–1912 (2001).

    Article  Google Scholar 

  4. Y. B. Tang, H. T. Cong, R. Zhong, and H. M. Cheng, “Thermal Expansion of a Composite of Single-Walled Carbon Nanotubes and Nanocrystalline Aluminum,” Carbon 42(15), 3251–3272 (2004).

    Article  Google Scholar 

  5. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, “Load Transfer and Deformation Mechanism in Carbon Nanotube-Polystyrene Composites,” Appl. Phys. Lett. 76(20), 2868–2870 (2000).

    Article  ADS  Google Scholar 

  6. V. Skakalova, U. Dettlaff-Weglikowska, and S. Roth, “Electrical and Mechanical Properties of Nanocomposites of SingleWall Carbon Nanotubes with PMMA,” Synthetic Metals 152(1–3), 349–352 (2005).

    Article  Google Scholar 

  7. M. Cadek, J. N. Coleman, V. Barron, et al., “Morphological and Mechanical Properties of Carbon-Nanotube-Reinforced Semicrystallin and Amorphous Polymer Composites,” Appl. Phys. Lett. 81(27), 5123–5125 (2002).

    Article  ADS  Google Scholar 

  8. E. Flahaut, A. Peigney, Ch. Laurent, et al., “Carbon Nanotube-Metal-Oxide Nanocomposites: Microstructure, Electrical Conductivity and Mechanical Properties,” Acta Mater. 48(14), 3803–3812 (2000).

    Article  Google Scholar 

  9. H. Wan, F. Delale, and L. Shen, “Effect of CNT Length and CNT-Matrix Interphase in Carbon Nanotube (CNT) Reinforces Composites,” Mech. Res. Communicat. 32(5), 481–489 (2005).

    Article  MATH  Google Scholar 

  10. G. M. Odegard, T. S. Gates, K. E. Wise, et al., “Constitutive Modeling of Nanotube-Reinforces Polymer Composite Systems,” Comp. Sci. Technol. 63(11), 1671–1687 (2003).

    Article  Google Scholar 

  11. H. L. Duan, J. Wang, Z. P. Huang, and B. L. Karihaloo, “Eshelby Formalism for Nano-Inhomogeneities,” Proc. R. Soc. 461(2062), 3335–3353 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. R. J. Arsenault and N. Shi, “Dislocation Generation due to Differences between the Coefficients of Thermal Expansion,” Mater. Sci. Engng 81, 175–187 (1986).

    Article  Google Scholar 

  13. F. Bondioli, V. Cannillo, E. Fabbri, and M. Messori, “Epoxy-Silica Nanocomposites: Preparation, Experimental Characterization, and Modeling,” J. Appl. Polym. Sci. 97(6), 2382–2386 (2005).

    Article  Google Scholar 

  14. R. V. Goldstein and K. B. Ustinov, Effect of Inclusions on the Effective Properties of Composites with the Influence of the Intermediate Phase Taken into Account Preprint No. 792 (Inst. Problem Mekhaniki RAN, Moscow, 2006) [in Russian].

    Google Scholar 

  15. S. Boutaleb, F. Zairi, A. Mesbah, et al., “Micromechanics-Based Modeling of Stiffness and Yield Stress for Silica/Polymer Nanocomposites,” Int. J. Solids Struct. 46(7–8), 1716–1726 (2009).

    Article  MATH  Google Scholar 

  16. I. Sevostianov and M. Kachanov, “Effect of Interphase Layers on the Overall Elastic and Conductive Properties of Matrix Composites. Applications to Nanosize Inclusion,” Int. J. Solids Struct. 44(3–4), 1304–1315 (2007).

    Article  MATH  Google Scholar 

  17. A. Akbari, J. P. Riviere, C. Templier, et al., “Hardness and Residual Stresses in TiN-Ni Nanocomposite Coating Deposited by Reactive Dual Ion Beam Sputtering,” Rev. Adv. Mater. Sci. 15, 111–117 (2007).

    Google Scholar 

  18. S. G. Roberts, “Thermal Shock of Ground and Polished Alumina and Al2O3/SiC Nanocomposites,” J. Europ. Ceramic Soc. 22(16), 2945–2956 (2002).

    Article  Google Scholar 

  19. S. Lurie, D. Volkov-Bogorodsky, V. Zubov, and N. Tuchkova, “Advanced Theoretical and Numerical Multiscale Modeling of Cohesion/Adhesion Interactions in Continuum Mechanics and Its Applications for Filled Nanocomposites,” Comput. Mater. Sci. 45(3), 709–714 (2009).

    Article  Google Scholar 

  20. S. Lurie and N. Tuchkova, “A Continual Adhesion Model of Solid Nanostructured Media,” Kompos. Nanostruct. 2(2), 25–43 (2009).

    Google Scholar 

  21. S. Lurie, P. Belov, D. Volkov-Bogorodsky, and N. Tuchkova, “Nanomechanical Modeling of the Nanostructures and Dispersed Composites,” Int. J. Comp. Mater. 28(3–4), 529–539 (2003).

    Article  Google Scholar 

  22. S. Lurie, P. Belov, D. Volkov-Bogorodsky, and N. Tuchkova, “Interphase Layer Theory and Application in the Mechanics of Composite Materials,” J. Mater. Sci. 41(20), 6693–6707 (2006).

    Article  ADS  Google Scholar 

  23. D. Volkov-Bogorodsky, Yu. G. Evtushenko, and V. Zubov, “Calculation of Deformations in Nanocomposites Using the Block Multipole Method with the AnalyticalЦNumerical Account of the Scale Effects,” Zh. Vych. Mat. Mat. Fiz. 46(7), 1302–1311 (2006) [Comput. Math. Math. Phys. (Engl. Transl.) 46 (7), 1234–1253 (2006)].

    Google Scholar 

  24. S. K. Kanaun and V. M. Levin, Efficient Field Method in Mechanics of Composite Materials (Izd-VO Petrozav. Univ., Petrozavodsk, 1993) [in Russian].

    Google Scholar 

  25. S. K. Kanaun and V. M. Levin, Self-Consistent Methods for Composites, Vol. 1: Static Problems(Springer, 2007).

    Google Scholar 

  26. N. F. Morozov, I. R. Nazyrov, and A. B. Freidin, “One-Dimensional Problem of the Phase Transformation of an Elastic Sphere,” Dokl. Ross. Akad. Nauk 346(2), 188–191 (1996) [Dokl. Math. (Engl. Transl.) 41 (1), 40–43 (1996)].

    MathSciNet  Google Scholar 

  27. I. R. Nazyrov and A. B. Freidin, “Phase Transformations in Deformation of Solids in a Model Problem of an Elastic Ball,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 52–71 (1998) [Mech. Solids (Engl. Transl.) 33 (5), 39–56 (1998)].

    Google Scholar 

  28. V. A. Eremeev, A. B. Freidin, and L. L. Sharipova, “The Stability of the Equilibrium of Two-Phase Elastic Solids,” Prikl. Mat. Mekh. 71(1), 66–92 (2007) [J. Appl. Math. Mech. (Engl. Transl.) 71 (1), 61–84 (2007)].

    MathSciNet  MATH  Google Scholar 

  29. E. N. Vilchevskaya and A. B. Freidin, “On Phase Transitions in a Domain of Material Inhomogeneity. I. Phase Transitions of an Inclusions in a Homogeneous External Field,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 208–228 (2007) [Mech. Solids (Engl. Transl.) 42 (5), 823–840 (2007)].

    Google Scholar 

  30. L. B. Kublanov and A. B. Freidin, “Solid Phase Seeds in a Deformable Material,” Prikl. Mat. Mekh. 52(3), 493–501 (1988) [J. Appl. Math. Mech. (Engl. Transl.) 52 (3), 382–389 (1988)].

    MathSciNet  Google Scholar 

  31. N. F. Morozov and A. B. Freidin, “Zones of Phase Transitions and Phase Transformations in Elastic Bodies under Various Stress States,” Trudy Mat. Inst. Steklov 223, 220–232 (1998) [Proc. Steklov Inst. Math. (Engl. Transl.) 223, 219–232 (1998)].

    MathSciNet  Google Scholar 

  32. A. B. Freidin, “Small-Strain Approximation in the Theory of Phase Transitions of Elastic Bodies under Deformation,” in Strength and Fracture of Materials and Structures. Intervuz. Collection of Papers, Vol. 18: Studies in Elasticity and Plasticity, Ed. by N. F. Morozov (Izd-vo St. Petersburg Univ., St. Petersburg, 1999), pp. 266–290 [in Russian].

    Google Scholar 

  33. A. B. Freidin, “On New Phase Inclusions in Elastic Solids,” ZAMM 87(2), 102–116 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  34. M. A. Grinfeld, “On Conditions of Thermodynamic Equilibrium of Phases of a Nonlinearly Elastic Material,” Dokl. Akad. Nauk SSSR 251(4), 824–827 (1980) [Soviet Math. Dokl. (Engl. Transl.)].

    Google Scholar 

  35. M. A. Grinfeld, Methods of Continuum Mechanics in Theory of Phase Transformations (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  36. R. D. James, “Finite Deformations by Mechanical Twinning,” Arch. Rat. Mech. Anal. 77(2), 143–177 (1981).

    Article  MATH  Google Scholar 

  37. M. E. Gurtin, “Two-Phase Deformations of Elastic Solids,” Arch. Rat. Mech. Anal. 84(1), 1–29 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  38. I. A. Kunin and E. G. Sosnina, “Stress Concentration on an Ellipsoidal Inhomogeneity in an Anisotropic Elastic Medium,” Prikl. Mat. Mekh. 37(2), 306–315 (1973) [J. Appl. Math. Mech. (Engl. Trabsl.) 37 (2), 287–296 (1973)].

    Google Scholar 

  39. I. A. Kunin, Elastic Media with Microstructure. II. Three-Dimensional Models, in Springer Series in Solid State Sciences, Vol. 44 (Springer-Verlag, Berlin, New-York, 1983).

    Google Scholar 

  40. A. B. Freidin and A. M. Chiskis, “Phase Transition Zones in Nonlinearly Elastic Isotropic Materials,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 91–109 (1994) (Part 1); No. 5, 49–61 (1994) (Part 2) [Mech. Solids (Engl. Transl.)].

    Google Scholar 

  41. A. B. Freidin, E. N. Vilchevskaya, and L. L. Sharipova, “Two-Phase Deformations within the Framework of Phase Transition Zones,” Theor. Appl. Mech. 28–29, 149–172 (2002).

    MathSciNet  Google Scholar 

  42. A. B. Freidin and L. L. Sharipova, “On a Model of Heterogenous Deformation of Elastic Bodies by the Mechanism of Multiple Appearance of New Phase Layers,” Meccanica 41(3), 321–339 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  43. A. B. Freidin, Y. B. Fu, L. L. Sharipova, and E. N. Vilchevskaya, “Spherically Symmetric Two-Phase Deformations and Phase Transition Zones,” Int. J. Solids Struct. 43(14–15), 4484–4508 (2006).

    Article  MATH  Google Scholar 

  44. A. B. Freidin, L. L. Sharipova, and E. N. Vilchevskaya, “Phase Transition Zones in Relations with Constitutive Equations of Elastic Solids,” in Proc. of the XXXII Summer School Actual Problems in Mechanics (APM-2004) (IPME RAS, St. Petersburg, 2004), pp. 140–150.

    Google Scholar 

  45. Y. Grabovsky and L. Truskinovsky, “Roughening Instability of Broken Extremals,” Arch. Rat. Mech. Anal. 200(1), 183–202 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  46. V. A. Eremeev, A. B. Freidin, and L. L. Shapirova, “Nonuniqueness and Stability in Problems of Equilibrium of Elastic Two-Phase Bodies,” Dokl.Ross. Akad.Nauk 391(2), 189–193 (2003) [Dokl. Phys. (Engl. Transl.) 48 (7), 359–363 (2003)].

    Google Scholar 

  47. J. D. Eshelby, “The Determination of the Elastic Field on an Ellipsoidal Inclusion and Related Problems,” Proc. Roy. Soc. London. Ser. A 241(1226), 376–396 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Y. B. Fu and A. B. Freidin, “Characterization and Stability of Two-Phase Piecewise-Homogeneous Deformation,” Proc. Roy. Soc. London. Ser. A 460(2051), 3065–3094 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. M. A. Antimonov, A. V. Cherkaev, and A. B. Freidin, “In Transformation Surface Construction for Phase Transitions in Deformable Solids,” in Proc. XXXVIII Summer School-Conference’ Advanced Problems in Mechanics’ (APM 2010), St. Petersburg (Repino), July 1–5, 2010 (St. Petersburg, 2010), pp. 23–29, http://apm-conf.spb.ru.

    Google Scholar 

  50. I. A. Kunin, “Theory of Dislocations,” in J. A. Schouten, Tensor Analysis for Physicists (Nauka, Moscow, 1965), pp. 373–443 [in Russian].

    Google Scholar 

  51. I. A. Kunin, Theory of Elastic Media with Microstructure (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  52. E. N. Vilchevskaya and A. B. Freidin, “Multiple Appearances of Ellipsoidal Nuclei of a New Phase,” Dokl. Ross. Akad. Nauk 411(6), 770–774 (2006) [Dokl. Phys. (Engl. Transl.) 51 (12), 692–696 (2006)].

    MathSciNet  Google Scholar 

  53. A. B. Freidin and E. N. Vilchevskaya, “Multiple Development of New Phase Inclusions in Elastic Solids,” Int. J. Engng Sci. 47(2), 240–260 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  54. T. Mura, Micromechanics of Defects in Solids (Kluwer Academic, Dordrecht, 1987).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Vilchevskaya.

Additional information

Original Russian Text © E.N. Vilchevskaya, R.A. Filippov, A.B. Freidin, 2013, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2013, No. 1, pp. 112–143.

About this article

Cite this article

Vilchevskaya, E.N., Filippov, R.A. & Freidin, A.B. On transient layers as new phase domains in composite materials. Mech. Solids 48, 92–118 (2013). https://doi.org/10.3103/S002565441301010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002565441301010X

Keywords

Navigation