1.

V. A. Palmov, *Vibrations of Elasto-Plastic Bodies* (Nauka, Moscow, 1976; Springer, Berlin, 1998).

2.

P. A. Zhilin, “Mathematical Theory of Inelastic Bodies,” Uspekhi Mekh. **2**(4), 3–36 (2003).

3.

S. B. Segletes, “Thermodynamic Stability of the Mie-Grüneisen Equation of State and Its Relevance to Hydrocode Computations,” J. Appl. Phys.

**70**(5), 2489–2499 (1991).

ADSCrossRef4.

V. N. Zharkov and V. A. Kalinin, *Equations of State for Solids at High Pressures and Temperatures* (Nauka, Moscow, 1968; Consultants Bureau, New York, 1971).

5.

A. I. Melker and A. V. Ivanov, “Dilatons of Two Types,” Fiz. Tverd. Tela **28**(11), 3396–3402 (1986) [Sov. Phys. Solid State (Engl. Transl.) **28** (11), 1912–1914 (1986)].

6.

J. C. Salter, *Introduction to Chemical Physics* (McGraw Hill, New York, 1939).

7.

J. S. Dugdale and D. K. C. MacDonald, “The Thermal Expansion of Solids,” Phys. Rev.

**89**(4), 832–834 (1953).

ADSCrossRef8.

V. Ya. Vashchenko and V. N. Zubarev, “Concerning the Grüneisen constant,” Fiz. Tverd. Tela **5**(3), 886–890 (1963) [Sov. Phys. Solid State (Engl. Transl.) **5** (3), 653–655 (1963)].

9.

I. S. Grigoriev and E. Z. Melikhov (Editors), *Handbook of PhysicalQuantities* (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, 1997).

10.

S. B. Segletes, “A Frequency-Based Equation of State for Metals,” Int. J. Impact Engng

**21**(9), 747–760 (1998).

CrossRef11.

L. V. Altshuller, “Use of Shock Waves in High-Pressure Physics,” Uspekhi Fiz. Nauk **85**(2), 197–258 (1965) [Sov. Phys. Uspekhi (Engl. Transl.) **8** (1), 52–91 (1965)].

12.

E. I. Kraus, “Small-Parameter Equation of State of a Solid,” Vestnik NGU. Ser. Fizika **2**(2), 65–73 (2007).

13.

R. V. Goldstein and A. V. Chentsov, “Discrete-Continuum Model of a Nanotube,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 57–74 (2005) [Mech. Solids (Engl. Transl.) **40** (4), 45–59 (2005)].

14.

O. S. Loboda and A. M. Krivtsov, “The Influence of the Scale Factor on the Elastic Moduli of a 3D Nanocrystal,” Izv. Akad. Nauk.Mekh. Tverd. Tela, No. 4, 27–41 (2005) [Mech. Solids (Engl. Transl.) **40** (4), 20–32 (2005)].

15.

I. E. Berinskii, E. A. Ivanova, A. M. Krivtsov, and N. F. Morozov, “Application of Moment Interaction to the Construction of a StableModel ofGraphite Crystal Lattice,” Izv. Akad. Nauk.Mekh. Tverd. Tela, No. 5, 6–16 (2007) [Mech. Solids (Engl. Transl.) **42** (5), 663–671 (2007)].

16.

E. A. Ivanova, A. M. Krivtsov, and N. F. Morozov, “Derivation of Macroscopic Relations of the Elasticity of Complex Crystal Lattices Taking into Account the Moment Interactions at the Microlevel,” Prikl. Mat. Mekh.

**71**(4), 595–615 (2007) [J. Appl.Math. Mech. (Engl. Transl.)

**71** (4), 543–561 (2007)].

MathSciNetMATH17.

A. M. Krivtsov, “Thermoelasticity of One-Dimensional Chain of Interacting Particles,” Izv. Vyssh. Uchebn. Zaved. Sev.-Kavkaz. Region. Estestv. Nauki, Special Issue. Nonlinear Problems of Continuum Mechanics, 231–243 (2003).

18.

A. M. Krivtsov, “From Nonlinear Oscillations to Equation of State in Simple Discrete Systems,” Chaos, Solitons, and Fractals

**17**(1), 79–87 (2003).

ADSMATHCrossRef19.

A. M. Krivtsov, *Deformation and Failure of Solids with Microstructure* (Fizmatlit, Moscow, 2007) [in Russian].

20.

M. Born and H. Kun,

*Dynamical Theory of Crystal Lattices* (Clarendon Press, Oxford, 1954; Izd-vo Inostr. Liter., Moscow, 1958).

MATH21.

M. Zhou, “A New Look at the Atomic Level Virial Stress: On Continuum-Molecular System Equivalence,” Proc. Roy. Soc. London. Ser. A

**459**(2037), 2347–2392 (2003).

ADSMATHCrossRef22.

V. Ph. Zhuravlev, *Foundations of Theoretical Mechanics* (Fizmatlit, Moscow, 2008) [in Russian].

23.

B. L. Glushak, V. F. Kuropatenko, and S. A. Novikov, *Studies of Material Strength under Dynamical Loads* (Nauka, Novosibirsk, 1992) [in Russian].

24.

A. I. Lurie, *Nonlinear Theory of Elasticity* (Nauka, Moscow, 1980) [in Russian].