Skip to main content
Log in

The discovery of the subpial granular layer in the human cerebral cortex

  • Communication
  • Published:
Translational Neuroscience

Abstract

The subpial granular layer (SGL) is a transient accumulation of tangentially migrating small granular neurons in the marginal zone of the developing fetal neocortex. It has recently attracted attention as a possible additional source of future cortical interneurons, or even as a putative precursor pool for generation of Cajal-Retzius cells. The discovery of the SGL is generally attributed to Otto Ranke and it is usually claimed that the SGL is specific for human brain. The aim of this review is: (1) to demonstrate that the first to observe SGL in the human cerebral cortex was not Otto Ranke in 1910, but Franz Boll in 1874; (2) to provide an English translation of Ranke’s original description of the SGL and thus demonstrate that he described the SGL in both human and animal brain; and (3) to provide a concise review of current studies concerning the developmental fate and possible functions of the transient fetal SGL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brun A (1965) The subpial granular layer of the foetal cerebral cortex in man. Acta Pathol Microbiol Scand (Suppl 179) 13:1–98

    Google Scholar 

  2. Gadisseux JF, Goffinet AM, Lyon G, Evrard P (1992) The human transient subpial granular layer: An optical, immunohistochemical, and ultrastructural analysis. J Comp Neurol 324:94–114

    Article  CAS  PubMed  Google Scholar 

  3. Sidman RL, Rakic P (1982) Development of the human central nervous system. In: Haymaker W, Adams RD (Eds) Histology and Histopathology of the Nervous System. Springfield: C.C. Thomas, pp. 3–145

    Google Scholar 

  4. Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–122

    Article  CAS  PubMed  Google Scholar 

  5. Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735

    Article  CAS  PubMed  Google Scholar 

  6. Ranke O (1910) Beiträge zur Kenntnis der normalen und pathologischen Hirnrindenbildung. Beitr Pathol Anat Allgem Pathol 47(1):51–125

    Google Scholar 

  7. Boll F (1874) Die Histiologie und Histiogenese der nervösen Centralorgane. Arch Psychiatr Nervenkr 4:1–138

    Article  Google Scholar 

  8. Hess N (1858) De Cerebelli Gyrorum Textura Disquisitiones Microscopicae. Dissertatio inauguralis. Tartu (Russia): Schünmann & Mattiesen, 36pp

    Google Scholar 

  9. Ranke O (1908) Ueber Gehirnveränderungen bei der angeborenen Syphilis. Habilitationsschrift zur Erlangung der venia legendi einer hohen medizinischen Fakultät der Ruprecht-Karls-Universität zu Heidelberg vorgelegt von Dr. Otto Ranke, Assistent an der psychiatrischen Klinik. Jena, Gustav Fischer, 97pp

    Google Scholar 

  10. Judaš M, Sedmak G, Pletikos M (2010) early history of subplate and interstitial neurons: from Theodor Meynert (1867) to the discovery of the subplate zone (1974). J Anat (Lond) 217:344–367

    Google Scholar 

  11. Schaffer K (1917) Ueber normale und pathologische Hirnfurchung. Z Ges Neurol Psychiat 38:1–34

    Article  Google Scholar 

  12. Filimonoff IN (1929) Zur embryonalen und postembryonalen Entwicklung der Grosshirnrinde des Menschen. J Psychol Neurol (Leipzig) 39:323–389

    Google Scholar 

  13. Poljakow GI (1979) Entwicklung der Neuronen der menschlichen Grosshirnrinde (Herausgegeben von B. Schönheit). Leipzig: VEB Georg Thieme, 320pp

    Google Scholar 

  14. Sanides F, Sas E (1970) Persistence of horizontal cells of the Cajal foetal type and of the subpial granular layer in parts of the mammalian paleocortex (with 10 figures). Ztschr Mikr-Anat Forschung 82:570–588

    CAS  Google Scholar 

  15. Zečević N, Rakic P (2001) Development of layer I neurons in the primate cerebral cortex. J Neurosci 21(15):5607–5619

    PubMed  Google Scholar 

  16. Meyer G, Soria JM, Martínez-Galán JR, Martín-Clemente B, Fairén A (1998) Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J Comp Neurol 397:493–518

    Article  CAS  PubMed  Google Scholar 

  17. Jiménez D, Rivera R, López-Mascaraque L, De Carlos JA (2003) Origin of the cortical layer I in rodents. Dev Neurosci 25:105–115

    Article  PubMed  Google Scholar 

  18. Meyer G, Wahle P (1999) The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the fetal human neocortex. Eur J Neurosci 11:3937–3944

    Article  CAS  PubMed  Google Scholar 

  19. Meyer G, Goffinet AM, Fairén A (1999) What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb Cortex 9:765–775

    Article  CAS  PubMed  Google Scholar 

  20. Bielschowsky M (1923) Ueber die Oberflächengestaltung des Grosshirnmantels bei Pachygyrie, Microgyrie und bei normaler Entwicklung. J Psychol Neurol 30:29–76

    Google Scholar 

  21. Rakic P, Sidman RL (1968) Supravital DNA synthesis in the developing human and mouse brain. J Neuropathol Exp Neurol 27:246–276

    Article  CAS  PubMed  Google Scholar 

  22. Evrard P, De Saint-Georges P, Kadhim H, Gadisseux JF (1989) In: French JH, Hard S, Casaer P (Eds) Pathology of Prenatal Encephalopathies in Childhood Neurology and Developmental Disabilities. Baltimore: Paul H. Brookes Publishing Co., pp. 153–176

    Google Scholar 

  23. Spreafico R, Arcelli P, Frassoni C, Canetti P, Giaccone G, Rizzuti T, Mastrangelo M, Bentivoglio M (1999) Development of layer I of the human cerebral cortex after midgestation: Architectonic fundings, immunocytochemical identification of neurons and glia, and in situ labeling of apoptotic cells. J Comp Neurol 410:126–142

    Article  CAS  PubMed  Google Scholar 

  24. Larroche JC (1981) The marginal layer in the neocortex of a 7 weekold human embryo. A light and electron microscopic study. Anat Embryol 162:301–312

    Article  CAS  PubMed  Google Scholar 

  25. Marin-Padilla M (1983) Structural organization of the human cerebral cortex prior to the appearance of the cortical plate. Anat Embryol 168:21–40

    Article  CAS  PubMed  Google Scholar 

  26. Zečević N (1993) Cellular composition of the telencephalic wall in human embryos. Early Hum Dev 32:131–149

    Article  PubMed  Google Scholar 

  27. Zečević N, Milošević A, Rakic S, Marin-Padilla M (1999) Early development and composition of the human primordial plexiform layer: an immunohistochemical study. J Comp Neurol 412:241–254

    Article  PubMed  Google Scholar 

  28. Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868

    CAS  PubMed  Google Scholar 

  29. Meyer G, Perez-Garcia CG, Abraham H, Caput D (2002b) Expression of p73 and reelin in the developing human cortex. J Neurosci 15:22:4973–4986

    Google Scholar 

  30. Meyer G, Lambert de Rouvroit C, Goffinet AM, Wahle P (2003) Disabled-1 mRNA and protein expression in developing human cortex. Eur J Neurosci 17:517–525

    Article  PubMed  Google Scholar 

  31. Bystron I, Molnár Z, Otellin V, Blakemore C (2005) Tangential networks of precocious neurons and early axonal outgrowth in the embryonic human forebrain. J Neurosci 25:2781–2792

    Article  CAS  PubMed  Google Scholar 

  32. Bystron I, Rakic P, Molnár Z, Blakemore C (2006) The first neurons of the human cerebral cortex. Nat Neurosci 9:880–886

    Article  CAS  PubMed  Google Scholar 

  33. Zečević N, Milošević A (1997) Initial development of g-aminobutyric acid immunoreactivity in the human cerebral cortex. J Comp Neurol 380:495–506

    Article  PubMed  Google Scholar 

  34. Meyer G, Goffinet AM (1998) Prenatal development of reelinimmunoreactive neurons in the human neocortex. J Comp Neurol 397:29–40

    Article  CAS  PubMed  Google Scholar 

  35. Marin-Padilla M (1995) Prenatal development of fibrous (white matter), protoplasmic (gray matter), and layer I astrocytes in the human cerebral cortex: A Golgi study. J Comp Neurol 357:554–572

    Article  CAS  PubMed  Google Scholar 

  36. Meyer G, Gonzalez-Hernandez T (1993) Developmental changes in layer I of the human neocortex during prenatal life: A DiI-tracing and AChE and NADPH-d histochemistry study. J Comp Neurol 338:317–336

    Article  CAS  PubMed  Google Scholar 

  37. Rakic S, Zečević N (2003) Emerging complexity of layer I in human cerebral cortex. Cereb Cortex 13:1072–1083

    Article  PubMed  Google Scholar 

  38. Marin-Padilla M, Marin-Padilla TM (1982) Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex. A Golgi study. Anat Embryol 164:161–206

    Article  CAS  PubMed  Google Scholar 

  39. Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian forebrain. Development 128:3759–3771

    CAS  PubMed  Google Scholar 

  40. Meyer G, Perez-Garcia CG, Gleeson JG (2002a) Selective expression of doublecortin and LIS1 in developing human cortex suggests unique modes of neuronal movement. Cereb Cortex 12:1225–1236

    Article  PubMed  Google Scholar 

  41. Kostović I, Judaš M, Kostović-Knežević’ Lj, Šimić G, Delalle I, Chudy D, Šajin B, Petanjek Z (1991) Zagreb Research Collection of human brains for developmental neurobiologists and clinical neuroscientists. Int J Dev Biol 35:215–230

    PubMed  Google Scholar 

  42. Kostović I, Jovanov-Milošević N, Krsnik Ž, Petanjek Z, Judaš M (2004) Laminar organization of the marginal zone in the human fetal cortex. Neuroembryology 3:19–26

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Judaš.

About this article

Cite this article

Judaš, M., Pletikos, M. The discovery of the subpial granular layer in the human cerebral cortex. Translat.Neurosci. 1, 255–260 (2010). https://doi.org/10.2478/v10134-010-0037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/v10134-010-0037-4

Keywords

Navigation