Fractional Calculus and Applied Analysis

, Volume 17, Issue 2, pp 361–370

Towards a geometric interpretation of generalized fractional integrals — Erdélyi-Kober type integrals on RN, as an example

Discussion Survey

DOI: 10.2478/s13540-014-0174-4

Cite this article as:
Herrmann, R. fcaa (2014) 17: 361. doi:10.2478/s13540-014-0174-4
  • 51 Downloads

Abstract

A family of generalized Erdélyi-Kober type fractional integrals is interpreted geometrically as a distortion of the rotationally invariant integral kernel of the Riesz fractional integral in terms of generalized Cassini ovaloids on RN. Based on this geometric point of view, several extensions are discussed.

Key Words and Phrases

fractional calculus Riesz fractional integrals Erdélyi-Kober fractional integrals generalized fractional calculus Cassini ovaloids 

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.GigaHedronDreieichGermany