Skip to main content
Log in

Numerics for the fractional Langevin equation driven by the fractional Brownian motion

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We study analytically and numerically the fractional Langevin equation driven by the fractional Brownian motion. The fractional derivative is in Caputo’s sense and the fractional order in this paper is α = 2 − 2H, where H ∈ (\(\tfrac{1} {2} \), 1) is the Hurst parameter (or, index). We give numerical schemes for the fractional Langevin equation with or without an external force. From the figures we can find that the mean square displacement of the fractional Langevin equation has the property of the anomalous diffusion. When the fractional order tends to an integer, the diffusion reduces to the normal diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Bouchaud, R. Cont, A Langevin approach to stock market fluctuations and crashes. Eur. Phys. J. B 6, No 4 (1998), 543–550.

    Article  Google Scholar 

  2. A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics. Springer-Verlag, New York (1997).

    MATH  Google Scholar 

  3. J.F. Coeurjolly, Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study. J. Stoch. Softw. 5, No 7 (2000), 1–53.

    Google Scholar 

  4. W.T. Coffey, Y.P. Kalmykov and J.T. Waldron, The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, World Scientific Press, Singapore (2004).

    MATH  Google Scholar 

  5. C.H. Eab, S.C. Lim, Fractional generalized Langevin equation approach to single-file diffusion. Phys. A 389, No 13 (2010), 2510–2521.

    Article  Google Scholar 

  6. K.S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function. Phys. Rev. E 73, No 6 (2006), 061104-1–061104-4.

    Article  Google Scholar 

  7. K.S. Fa, Fractional Langevin equation and Riemann-Liouville fractional derivative. Eur. Phys. J. E 24, No 2 (2007), 139–143.

    Article  Google Scholar 

  8. J.G.E.M. Fraaije, A.V. Zvelindovsky, G.J.A. Sevink and N.M. Maurits, Modulated self-organization in complex amphilic systems. Mol. Simul. 25, No 3–4 (2000), 131–144.

    Article  Google Scholar 

  9. P. Guo, Numerical Simulations of the Fractional Differential Equations in Stochastics. Ph. D. disseration, Shanghai University (2012).

  10. R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific Press, Singapore (2000).

    Book  MATH  Google Scholar 

  11. E.J. Hinch, Application of the Langevin equation to fluid suspensions. J. Fluid Mech. 72, No 3 (1975), 499–511.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Hu, W.Q. Zhu, L.C. Chen, Stochastic Hopf bifurcation of quasiintegrable Hamiltonian systems with fractional derivative damping. Int. J. Bifurcation and Chaos 22, No 4 (2012), 1250083-1–1250083-13.

    MathSciNet  Google Scholar 

  13. A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science Ltd., Netherlands (2006).

    MATH  Google Scholar 

  14. V. Kiryakova, Generalized Fractional Calculus and Applications. Longman Sci. & Technical and J. Wiley, Harlow — N. York (1994).

    MATH  Google Scholar 

  15. R.A. Kosinski, A. Grabowski, Langevin equations for modeling evacuation processes. Acta Phys. Pol. B 3, No 2 (2010), 365–377.

    Google Scholar 

  16. V. Kobelev, E. Romanov, Fractional Langevin equation to describe anomalous diffusion. Prog. Theor. Phys. 2000, No 139 (2000), 470–479.

    Google Scholar 

  17. R. Kubo, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, No 1(1966), 255–284.

    Article  Google Scholar 

  18. C.P. Li, F.H. Zeng, The finite difference methods for the fractional ordinary differential equations. Numer. Funct. Anal. Optimiz. 34, No 1 (2013), In press; DOI:10.1080/01630563.2012.706673.

  19. C.P. Li, Z.G. Zhao, Introduction to fractional integrability and differentiability. Eur. Phys. J.-ST 193, No 1 (2011), 5–26.

    Article  Google Scholar 

  20. C.P. Li, F.H. Zeng, F.W. Liu, Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15, No 3 (2012), 383–406; DOI:10.2478/s13540-012-0028-x; http://link.springer.com/article/10.2478/s13540-012-0028-x.

    MathSciNet  Google Scholar 

  21. S.C. Lim, M. Li and L.P. Teo, Langevin equation with two fractional orders. Phys. Lett. A 372, No 42 (2008), 6309–6320.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Lutz, Fractional Langevin equation. Phys. Rev. E 64, No 5 (2001), 051106-1–051106-4.

    Article  Google Scholar 

  23. F. Mainardi, R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118, No 1–2 (2000), 283–299.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Mainardi, F. Tampieri, Diffusion regimes in Brownian motion induced by the Basset history force. Techn. Pap. No 1 (ISAO-TP-99/1), ISAO-CNR, Bologna, March 1999, pp. 25 (Inv. Lecture at Meeting of TAO, Working Group on Diffusion, Stockholm, Sweden, Oct. 1997).

  25. B.B. Mandelbrot, J.W. Van Ness, Fractional Brownian motions, fractional noise and applications. SIAM. Rev. 10, No 4 (1968), 422–437.

    Article  MathSciNet  MATH  Google Scholar 

  26. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-Interscience Publication, New York (1993).

    MATH  Google Scholar 

  27. K.B. Oldham, J. Spainer, The Fractional Calculus. Academic Press, New York (1974).

    MATH  Google Scholar 

  28. I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999).

    MATH  Google Scholar 

  29. L.C.G. Rogers, Arbitrage with fractional Brownian motion. Math. Financ. 7, No 1 (1997), 95–105.

    Article  MATH  Google Scholar 

  30. J. Schluttig, D. Alamanova, V. Helms and U.S. Schwarz, Dynamics of protein-protein encounter: A Langevin equation approach with reaction patches. J. Chem. Phys. 129, No 15 (2008), 155106-1–155106-1.

    Article  Google Scholar 

  31. A. Takahashi, Low-Energy Nuclear Reactions and New Energy Technologies Sourcebook. Oxford University Press, Cary (2009).

    Google Scholar 

  32. B.J. West, S. Picozzi, Fractional Langevin model of memory in financial market. Phys. Rev. E 66, No 4 (2002), 037106-1–037106-12.

    MathSciNet  Google Scholar 

  33. K. Wodkiewicz, M.S. Zubairy, Exact solution of a nonlinear Langevin equation with applications to photoelectron counting and noise-induced instability. J. Math. Phys. 24, No 6 (1983), 1401–1404.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Guo.

Additional information

Editorial Note: For the presentation of this paper, the first author Peng Guo was awarded the prize for “Best Oral Presentation” at the 2012 Symposium on Fractional Differentiation and Its Applications (FDA’ 2012), Hohai University, Nanjing.

About this article

Cite this article

Guo, P., Zeng, C., Li, C. et al. Numerics for the fractional Langevin equation driven by the fractional Brownian motion. fcaa 16, 123–141 (2013). https://doi.org/10.2478/s13540-013-0009-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0009-8

MSC 2010

Key Words and Phrases

Navigation