Skip to main content
Log in

On a fractional Zener elastic wave equation

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This survey concerns a causal elastic wave equation which implies frequency power-law attenuation. The wave equation can be derived from a fractional Zener stress-strain relation plus linearized conservation of mass and momentum. A connection between this four-parameter fractional wave equation and a physically well established multiple relaxation acoustical wave equation is reviewed. The fractional Zener wave equation implies three distinct attenuation power-law regimes and a continuous distribution of compressibility contributions which also has power-law regimes. Furthermore it is underlined that these wave equation considerations are tightly connected to the representation of the fractional Zener stress-strain relation, which includes the spring-pot viscoelastic element, and by a Maxwell-Wiechert model of conventional springs and dashpots. A purpose of the paper is to make available recently published results on fractional calculus modeling in the field of acoustics and elastography, with special focus on medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. H. Abel, Auflösung einer mechanischen Aufgabe (Resolution of a mechanical problem). J. Reine. Angew. Math. 1 (1826), 153–157.

    Article  MATH  Google Scholar 

  2. K. Adolfsson, M. Enelund, and P. Olsson, On the fractional order model of viscoelasticity. Mech. Time-Dep. Mater. 9, No 1 (2005), 15–34.

    Article  Google Scholar 

  3. M. Ainslie and J. G. McColm, A simplified formula for viscous and chemical absorption in sea water. J. Acoust. Soc. Am. 103, No 3 (1998), 1671–1672.

    Article  Google Scholar 

  4. T. M. Atanackovic, A modified Zener model of a viscoelastic body. Continuum Mech. Therm. 14, No 2 (2002), 137–148.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. M. Atanackovic, S. Konjik, L. Oparnica, and D. Zorica, Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. Abstr. Appl. Anal. 2011 (2011), Article ID 975694.

  6. R. L. Bagley. The thermorheologically complex material. Int. J. Eng. Sci. 29, No 7 (1991), 797–806.

    Article  MATH  Google Scholar 

  7. R. L. Bagley and P. J. Torvik, Fractional calculus — A different approach to the analysis of viscoelastically damped structures. AIAA J. 21, No 5 (1983), 741–748.

    Article  MATH  Google Scholar 

  8. R. L. Bagley and P. J. Torvik, On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, No 1 (1986), 133–155.

    Article  MATH  Google Scholar 

  9. J. C. Bamber, Attenuation and Absorption, Ch. 4, pp. 93–166. John Wiley & Sons, Chichester, 2005.

    Google Scholar 

  10. C. T. Barry, B. Mills, Z. Hah, R. A. Mooney, C. K. Ryan, D. J. Rubens, and K. J. Parker, Shear wave dispersion measures liver steatosis. Ultrasound Med. Biol. 38, No 2 (2012), 175–182.

    Article  Google Scholar 

  11. H. Bass, L. Sutherland, A. Zuckerwar, D. Blackstock, and D. Hester, Atmospheric absorption of sound: Further developments. J. Acoust. Soc. Am. 97 (1995), 680–683.

    Article  Google Scholar 

  12. P. Beard, Biomedical photoacoustic imaging. Interface Focus 1, No 4 (2011), 602–631.

    Article  Google Scholar 

  13. M.N. Berberan-Santos, E.N. Bodunov, B. Valeur, Luminescence decays with underlying distributions of rate constants: General properties and selected cases. In: M.N. Berberan-Santos, M. Hof, Eds., Fluorescence of Supermolecules, Polymers, and Nanosystems, Vol. 4. Springer Ser. on Fluorescence, pp. 67–103, Springer, Berlin-Heidelberg, 2008.

    Chapter  Google Scholar 

  14. J. Bercoff, M. Tanter, and M. Fink, Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr., Freq. Control 51, No 4 (2004), 396–409.

    Article  Google Scholar 

  15. S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, and R. Magin, Generalized fractional order bloch equation with extended delay. Int. J. Bifurcat. Chaos 22, No 04 (2012), 1250071-1–1250071-15.

    Google Scholar 

  16. M. Caputo, Linear models of dissipation whose Q is almost frequency independent — II. Geophys. J. Roy. Astr. S. 13, No 5 (1967), 529–539; Reprinted in: Fract. Calc. Appl. Anal. 11, No 1 (2008), 3–14; http://www.blackwell-synergy.com/toc/gji/13/5.

    Article  Google Scholar 

  17. M. Caputo, J. M. Carcione, and F. Cavallini, Wave simulation in biologic media based on the Kelvin-Voigt fractional-derivative stress-strain relation. Ultrasound Med. Biol. 37, No 6 (2011), 996–1004.

    Article  Google Scholar 

  18. M. Caputo and F. Mainardi. A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, No 1 (1971), 134–147; Reprinted in: Fract. Calc. Appl. Anal. 10, No 3 (2007), 309–324; at http://www.math.bas.bg/~fcaa.

    Article  Google Scholar 

  19. J.M. Carcione, A generalization of the Fourier pseudospectral method. Geophysics 75, No 6 (2010), A53–A56.

    Article  Google Scholar 

  20. S. Chatelin, S. A. Lambert, L. Jugé, X. Cai, S. P. Näsholm, V. Vilgrain, B. E. Van Beers, L. E. Maitre, X. Bilston, B. Guzina, S. Holm, and R. Sinkus. Measured elasticity and its frequency dependence are sensitive to tissue microarchitecture in mr elastography. In: Proc. 20th Annual Meeting of ISMRM, May 2012.

  21. A. Chatterjee, Statistical origins of fractional derivatives in viscoelasticity. J. Sound. Vib. 284, No 3–5 (2005), 1239–1245.

    Article  Google Scholar 

  22. S. Chen, M. Fatemi, and J. F. Greenleaf, Quantifying elasticity and viscosity from measurement of shear wave speed dispersion. J. Acoust. Soc. Am. 115, No 6 (2004), 2781–2785.

    Article  Google Scholar 

  23. W. Chen and S. Holm, Modified Szabo’s wave equation models for lossy media obeying frequency power law. J. Acoust. Soc. Am. 114, No 5 (2003), 2570–2574.

    Article  Google Scholar 

  24. K. S. Cole and R. H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, No 4 (1941), 341–351.

    Article  Google Scholar 

  25. C. Coussot, S. Kalyanam, R. Yapp, and M. Insana, Fractional derivative models for ultrasonic characterization of polymer and breast tissue viscoelasticity. IEEE Trans. Ultrason. Ferroelectr., Freq. Control 56, No 4 (2009), 715–725.

    Article  Google Scholar 

  26. D. O. Craiem, F. J. Rojo, J. M. Atienza, G. V. Guinea, and R. L. Armentano, Fractional calculus applied to model arterial viscoelasticity. Latin. Am. Appl. Res. 38, No 2 (2008), 141–145.

    Google Scholar 

  27. G. B. Davis, M. Kohandel, S. Sivaloganathan, and G. Tenti, The constitutive properties of the brain paraenchyma. Part 2. Fractional derivative approach. Med. Eng. Phys. 28, No 5 (2006), 455–459.

    Article  Google Scholar 

  28. E. C. de Oliveira, F. Mainardi, and J. Vaz, Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. Eur. J. Phys. 193 (2011), 161–171.

    Google Scholar 

  29. F. Dinzart and P. Lipinski, Improved five-parameter fractional derivative model for elastomers. Arch. Mech. 61, No 6 (2009), 459–474.

    MathSciNet  Google Scholar 

  30. V. D. Djordjević, J. Jarić, B. Fabry, J. J. Fredberg, and D. Stamenović, Fractional derivatives embody essential features of cell rheological behavior. Ann. Biomed. Eng. 31 (2003), 692–699.

    Article  Google Scholar 

  31. M. M. Djrbashian, Integral Transforms and Representations of Functions in the Complex Domain, Chs. 3–4. Nauka, Moscow, 1966 (In Russian).

    Google Scholar 

  32. M. M. Djrbashian, Harmonic Analysis and Boundary Value Problems in the Complex Domain, Ch. 1. Birkhäuser, Basel, 1993.

    Book  MATH  Google Scholar 

  33. F. A. Duck, Physical Properties of Tissue. Academic Press, 1990.

  34. R. L. Ehman, K. J. Glaser, and A. Manduca, Review of MR elastography applications and recent developments. J. Magn. Reson. 36, No 4 (2012), 757–774.

    Article  Google Scholar 

  35. Y. Feldman, Y. A. Gusev, and M. A. Vasilyeva, Dielectric Relaxation Phenomena in Complex Systems. Tutorial, Kazan Federal University, Institute of Physics, 2012.

    Google Scholar 

  36. C. Friedrich and H. Braun, Generalized cole-cole behavior and its rheological relevance. Rheol. Acta 31 (1992), 309–322.

    Article  Google Scholar 

  37. J. Garnier and K. Sølna, Effective fractional acoustic wave equations in one-dimensional random multiscale media. J. Acoust. Soc. Am. 127, No 1 (2010), 62–72.

    Article  Google Scholar 

  38. W. G. Glöckle and T. F. Nonnenmacher, Fractional integral operators and Fox functions in the theory of viscoelasticity. Macromolecules 24, No 24 (1991), 6426–6434

    Article  Google Scholar 

  39. N. M. Grahovac and M. Zigic, Modelling of the hamstring muscle group by use of fractional derivatives. Comput. Math. Appl. 59, No 5 (2010), 1695–1700.

    Article  MathSciNet  MATH  Google Scholar 

  40. H. J. Haubold, A. M. Mathai, and R. K. Saxena, Mittag-Leffler functions and their applications. J. of Appl. Math. 2011 (2011), 1–51.

    Article  MathSciNet  Google Scholar 

  41. S. Holm and S. P. Näsholm, A causal and fractional all-frequency wave equation for lossy media. J. Acoust. Soc. Am. 130, No 4 (2011), 2195–2202.

    Article  Google Scholar 

  42. S. Holm and R. Sinkus, A unifying fractional wave equation for compressional and shear waves. J. Acoust. Soc. Am. 127 (2010), 542–548.

    Article  Google Scholar 

  43. L. Jugé, S. A. Lambert, S. Chatelin, L. ter Beek, V. Vilgrain, B. E. Van Beers, L. E. Bilston, B. Guzina, S. Holm, and R. Sinkus, Sub-voxel micro-architecture assessment by diffusion of mechanical shear waves. In: Proc. 20th Annual Meeting of ISMRM, May 2012.

  44. J. F. Kelly and R. J. McGough, Fractal ladder models and power law wave equations. J. Acoust. Soc. Am. 126, No 4 (2009), 2072–2081.

    Article  Google Scholar 

  45. D. Klatt, U. Hamhaber, P. Asbach, J. Braun, and I. Sack, Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: A study of brain and liver viscoelasticity. Phys. Med. Biol. 52, No 24 (2007), 7281–7294.

    Article  Google Scholar 

  46. M. Kohandel, S. Sivaloganathan, G. Tenti, and K. Darvish, Frequency dependence of complex moduli of brain tissue using a fractional Zener model. Phys. Med. Biol. 50, No 12 (2005), 2799–2805.

    Article  Google Scholar 

  47. S. Konjik, L. Oparnica, and D. Zorica, Waves in fractional Zener type viscoelastic media. J. Math. Anal. Appl. 365, No 1 (2010), 259–268.

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Kowar and O. Scherzer, Attenuation models in photoacoustics. In: H. Ammari, Ed., Mathematical Modeling in Biomedical Imaging II, Vol. 2035 of L.N.M., pp. 85–130, Springer, Berlin-Heidelberg, 2012.

    Chapter  Google Scholar 

  49. M. Liebler, S. Ginter, T. Dreyer, and R. E. Riedlinger, Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation. J. Acoust. Soc. Am. 116 (2004), 2742–2750.

    Article  Google Scholar 

  50. J. G. Liu and M. Y. Xu, Higher-order fractional constitutive equations of viscoelastic materials involving three different parameters and their relaxation and creep functions. Mech. Time-Depend. Mat. 10 (2006), 263–279.

    Article  Google Scholar 

  51. Y. Luchko, Fractional wave equation and damped waves. ArXiv e-prints, May 2012.

  52. J. A. T. Machado and A. Galhano, Fractional dynamics: A statistical perspective. J. Comput. Nonlin. Dynam. 3, No 2 (2008), 021201-1–021201-4.

    Google Scholar 

  53. F. Mainardi, Fractional relaxation in anelastic solids. Journal of Alloys and Compounds 211 (1994), 534–538.

    Article  Google Scholar 

  54. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelesticity: An Introduction to Mathematical Models, pp. 1–347. Imperial College Press, London, 2010.

    Book  MATH  Google Scholar 

  55. F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity. Fract. Calc. Appl. Anal. 15, No 4 (2012), 712–717; DOI:10.2478/s13540-012-0048-6; at http://link.springer.com/article/10.2478/s13540-012-0048-6.

    MathSciNet  Google Scholar 

  56. F. Mainardi and G. Spada, Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. J. Phys. 193 (2011), 133–160.

    Google Scholar 

  57. T. Meidav, Viscoelastic properties of the standard linear solid. Geophys. Prospect. 12, No 1 (1964), 1365–2478.

    Article  Google Scholar 

  58. S. I. Meshkov, G. N. Pachevskaya, V. S. Postnikov, and U. A. Rossikhin, Integral representations of ∋γ-functions and their application to problems in linear viscoelasticity. Int. J. Eng. Sci. 9, No 4 (1971), 387–398.

    Article  MathSciNet  MATH  Google Scholar 

  59. R. Metzler and T. F. Nonnenmacher, Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials. Int. J. Plasticity 19, No 7 (2003), 941–959.

    Article  MATH  Google Scholar 

  60. M. G. Mittag-Leffer, Sur la nouvelle fonction E α(x) (On the new function E α(x)). C. R. Acad. Sci. Paris 137 (1903), 554–558.

    Google Scholar 

  61. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269, No 5232 (1995), 1854–1857.

    Article  Google Scholar 

  62. A. I. Nachman, J. F. Smith III, and R. C. Waag, An equation for acoustic propagation in inhomogeneous media with relaxation losses. J. Acoust. Soc. Am. 88 (1990), 1584–1595.

    Article  Google Scholar 

  63. S. P. Näsholm and S. Holm, Linking multiple relaxation, power-law attenuation, and fractional wave equations. J. Acoust. Soc. Am. 130, No 5 (2011), 3038–3045.

    Article  Google Scholar 

  64. S. P. Näsholm and S. Holm, A fractional acoustic wave equation from multiple relaxation loss and conservation laws. Proc. 5th Int. Workshop on Fractional Differentiation and its Applications’ 2012, China.

  65. R. R. Nigmatullin, Theory of dielectric relaxation in non-crystalline solids: From a set of micromotions to the averaged collective motion in the mesoscale region. Physica B 358, No 1–4 (2005), 201–215.

    Article  Google Scholar 

  66. R. F. O’Doherty and N. A. Anstey, Reflections on amplitudes. Geophys. Prosp. 19 (1971), 430–458.

    Article  Google Scholar 

  67. M. L. Palmeri and K. R. Nightingale, Acoustic radiation force-based elasticity imaging methods. Interface Focus 1, No 4 (2011), 553–564.

    Article  Google Scholar 

  68. S. Papazoglou, S. Hirsch, J. Braun, and I. Sack, Multifrequency inversion in magnetic resonance elastography. Phys. Med. Biol. 57, No 8 (2012), 2329–2346.

    Article  Google Scholar 

  69. K. Papoulia, V. Panoskaltsis, N. Kurup, and I. Korovajchuk, Rheological representation of fractional order viscoelastic material models. Rheol. Acta 49 (2010), 381–400.

    Article  Google Scholar 

  70. H. Pauly and H. P. Schwan, Mechanism of absorption of ultrasound in liver tissue. J. Acoust. Soc. Am. 50, No 2B (1971), 692–699.

    Article  Google Scholar 

  71. L. M. Petrovic, D. T. Spasic, and T. M. Atanackovic, On a mathematical model of a human root dentin. Dent. Mater. 21, No 2 (2005), 125–128.

    Article  Google Scholar 

  72. I. Podlubny, Fractional Differential Equations, Ch. 10.2. Academic Press, New York, 1999.

    MATH  Google Scholar 

  73. I. Podlubny, Fractional Differential Equations, Chs. 1–2. Academic Press, New York, 1999.

    MATH  Google Scholar 

  74. F. Prieur and S. Holm, Nonlinear acoustic wave equations with fractional loss operators. J. Acoust. Soc. Am. 130, No 3 (2011), 1125–1132.

    Article  Google Scholar 

  75. F. Prieur, G. Vilenskiy, and S. Holm, A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators. J. Acoust. Soc. Am. 132 (2012), 2169–2172.

    Article  Google Scholar 

  76. T. Pritz, Analysis of four-parameter fractional derivative model of real solid materials. J. Sound. Vib. 195, No 1 (1996), 103–115.

    Article  MATH  Google Scholar 

  77. T. Pritz, Loss factor peak of viscoelastic materials: Magnitude to width relations. J. Sound. Vib. 246, No 2 (2001), 265–280.

    Article  Google Scholar 

  78. T. Pritz, Five-parameter fractional derivative model for polymeric damping materials. J. Sound. Vib. 265, No 5 (2003), 935–952.

    Article  Google Scholar 

  79. H. Roitner, J. Bauer-Marschallinger, T. Berer, and P. Burgholzer, Experimental evaluation of time domain models for ultrasound attenuation losses in photoacoustic imaging. J. Acoust. Soc. Am. 131 (2012), 3763–3774.

    Article  Google Scholar 

  80. Y. A. Rossikhin, Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids. Applied Mech. Rev. 63, No 1 (2010), 010701-1–010701-12.

    Google Scholar 

  81. Y. A. Rossikhin and M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50 (1997), 15–67.

    Article  Google Scholar 

  82. Y. A. Rossikhin and M. V. Shitikova, Analysis of rheological equations involving more than one fractional parameters by the use of the simplest mechanical systems based on these equations. Mech. Time-Depend. Mat. 5, No 2 (2001), 131–175.

    Article  Google Scholar 

  83. Y. A. Rossikhin and M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 63 (2010), 010801–1-25.

    Article  Google Scholar 

  84. D. Royer and E. Dieulesaint, Elastic Waves in Solids, Vol. I. Springer, Berlin, 2000.

    Book  Google Scholar 

  85. I. Sack, B. Beierbach, J. Wuerfel, D. Klatt, U. Hamhaber, S. Papazoglou, P. Martus, and J. Braun, The impact of aging and gender on brain viscoelasticity. NeuroImage 46, No 3 (2009), 652–657.

    Article  Google Scholar 

  86. M. Sasso, G. Palmieri, and D. Amodio, Application of fractional derivative models in linear viscoelastic problems. Mech. Time-Depend. Mat. 15 (2011), 367–387.

    Article  Google Scholar 

  87. H. Schiessel and A. Blumen, Hierarchical analogues to fractional relaxation equations. J. Phys. A 26, No 19 (1993), 5057–5069.

    Article  Google Scholar 

  88. H. Schiessel and A. Blumen, Mesoscopic pictures of Sol-Gel transition: Ladder models and fractal networks. Macromolecules 28 (1995), 4013–4019.

    Article  Google Scholar 

  89. M. Seredyńska and A. Hanyga, Relaxation, dispersion, attenuation, and finite propagation speed in viscoelastic media. J. Math. Phys. 51, No 9 (2010), 092901.

    Article  MathSciNet  Google Scholar 

  90. R. Sinkus, J.-L. Daire, V. Vilgrain, and B. E. Van Beers, Elasticity imaging via MRI: Basics, overcoming the waveguide limit, and clinical liver results. Curr. Med. Imaging Rev. 8, No 1 (2012), 56–63.

    Article  Google Scholar 

  91. R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, High-resolution tensor MR elastography for breast tumour detection. Phys. Med. Biol. 45, No 6 (2000), 1649–1664.

    Article  Google Scholar 

  92. R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, and M. Fink, MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn. Res. in Med. 58, No 6 (2007), 1135–1144.

    Article  Google Scholar 

  93. A. A. Stanislavsky, The stochastic nature of complexity evolution in the fractional systems. Chaos Soliton Fract. 34, No 1 (2007), 51–61.

    Article  MathSciNet  MATH  Google Scholar 

  94. T. L. Szabo and J. Wu, A model for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107 (2000), 2437–2446.

    Article  Google Scholar 

  95. M. Tabei, T. D. Mast, and R. C. Waag, Simulation of ultrasonic focus aberration and correction through human tissue. J. Acoust. Soc. Am. 113, No 2 (2003), 1166–1176.

    Article  Google Scholar 

  96. B. E. Treeby and B. T. Cox, Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am. 127 (2010), 2741–2748.

    Article  Google Scholar 

  97. B. E. Treeby and B. T. Cox, Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am. 127 (2010), 2741–2748, Section IIB.

    Article  Google Scholar 

  98. B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. J. Acoust. Soc. Am. 131, No 6 (2012), 4324–4336.

    Article  Google Scholar 

  99. B. E. Treeby, E. Z. Zhang, and B. T. Cox, Photoacoustic tomography in absorbing acoustic media using time reversal. Inverse Probl. 26, No 11 (2010), 115003.

    Article  MathSciNet  Google Scholar 

  100. G. Vilensky, G. ter Haar, and N. Saffari, A model of acoustic absorption in fluids based on a continuous distribution of relaxation times. Wave Motion 49, No 1 (2012), 93–108.

    Article  MathSciNet  Google Scholar 

  101. K. R. Waters, J. Mobley, and J. G. Miller, Causality-imposed (Kramers-Kronig) relationships between attenuation and dispersion. IEEE Trans. Ultrason. Ferroelectr., Freq. Control, 52, No 5 (2005), 822–833.

    Article  Google Scholar 

  102. R. L. Weaver and Y. H. Pao, Dispersion relations for linear wave propagation in homogeneous and inhomogeneous media. Journ. Math. Phys. 22 (1981), 1909–1918.

    Article  MathSciNet  MATH  Google Scholar 

  103. K. Weron and A. Klauzer, Probabilistic basis for the Cole-Cole relaxation law. Ferroelectrics 236, No 1 (2000), 59–69.

    Article  Google Scholar 

  104. D. Widder, An Introduction to Transform Theory, Ch. 5.13. Pure and Applied Mathematics Ser., Academic Press, 1971.

  105. A. Wiman, Über den Fundamentalsatz in der Theorie der Funktionen E α(x) (About the fundamental theorem in the theory of the function E α(x)). Acta Mathematica 29 (1905), 191–201.

    Article  MathSciNet  MATH  Google Scholar 

  106. M. G. Wismer, Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation. J. Acoust. Soc. Am. 120 (2006), 3493–3502.

    Article  Google Scholar 

  107. M. G. Wismer and R. Ludwig, An explicit numerical time domain formulation to simulate pulsed pressure waves in viscous fluids exhibiting arbitrary frequency power law attenuation. IEEE Trans. Ultrason. Ferroelectr., Freq. Control 42, No 6 (1995), 1040–1049.

    Article  Google Scholar 

  108. X. Yang and R. O. Cleveland, Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging. J. Acoust. Soc. Am. 117 (2005), 113–123.

    Article  Google Scholar 

  109. T. K. Yasar, T. J. Royston, and R. L. Magin, Wideband MR elastography for viscoelasticity model identification. Magnet. Reson. Med., 2012, Online Version of Record published before inclusion in an issue.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Peter Näsholm.

About this article

Cite this article

Näsholm, S.P., Holm, S. On a fractional Zener elastic wave equation. fcaa 16, 26–50 (2013). https://doi.org/10.2478/s13540-013-0003-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0003-1

MSC 2010

Key Words and Phrases

Navigation