Skip to main content
Log in

Erdélyi-Kober fractional diffusion

  • Short Note
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The aim of this Short Note is to highlight that the generalized grey Brownian motion (ggBm) is an anomalous diffusion process driven by a fractional integral equation in the sense of Erdélyi-Kober, and for this reason here it is proposed to call such family of diffusive processes as Erdélyi-Kober fractional diffusion. The ggBm is a parametric class of stochastic processes that provides models for both fast and slow anomalous diffusion. This class is made up of self-similar processes with stationary increments and it depends on two real parameters: 0 < α ≤ 2 and 0 < β ≤ 1. It includes the fractional Brownian motion when 0 < α ≤ 2 and β = 1, the time-fractional diffusion stochastic processes when 0 < α = β < 1, and the standard Brownian motion when α = β = 1. In the ggBm framework, the Mainardi function emerges as a natural generalization of the Gaussian distribution recovering the same key role of the Gaussian density for the standard and the fractional Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Erdélyi, On fractional integration and its applications to the theory of Hankel transforms. Quart. J. Math. Oxford 11, No 1 (1940), 293–303.

    Article  Google Scholar 

  2. R. Gorenflo, Yu. Luchko, F. Mainardi, Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2, No 4 (1999), 383–414; http://www.math.bas.bg/~fcaa

    MathSciNet  MATH  Google Scholar 

  3. R. Gorenflo, Yu. Luchko, F. Mainardi, Wright functions as scaleinvariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118, No 1–2 (2000), 175–191.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Gorenflo, F. Mainardi, Subordination pathways to fractional diffusion. Eur. Phys. J. Special Topics 193, (2011), 119–132.

    Article  Google Scholar 

  5. R. Gorenflo, F. Mainardi, Parametric subordination in fractional diffusion processes. In: Fractional Dynamics. Recent Advances, World Scientific, Singapore (2011), Chapter 10, 227–261.

    Google Scholar 

  6. P. Grigolini, A. Rocco, B.J. West, Fractional calculus as a macroscopic manifestation of randomness. Phys. Rev. E 59, No 3 (1999), 2603–2613.

    Article  Google Scholar 

  7. V. Kiryakova, Generalized Fractional Calculus and Applications. Longman Scientific & Technical and J. Wiley, Harlow - N. York (1994).

  8. J. Klafter, I.M. Sokolov, Anomalous diffusion spreads its wings. Physics World, August (2005), 29–32.

  9. H. Kober, On a fractional integral and derivative. Quart. J. Math. Oxford 11, No 1 (1940), 193–211.

    Article  MathSciNet  Google Scholar 

  10. Yu. Luchko, Operational rules for a mixed operator of the Erdélyi-Kober type. Fract. Calc. Appl. Anal. 7, No 3 (2004), 339–364; http://www.math.bas.bg/~fcaa

    MathSciNet  MATH  Google Scholar 

  11. Yu. Luchko, J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal. 10, No 3 (2007), 249–267; http://www.math.bas.bg/~fcaa

    MathSciNet  MATH  Google Scholar 

  12. B.N. Lundstrom, M.H. Higgs, W.J. Spain, A.L. Fairhall, Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience 11, No 11 (2008), 1335–1342.

    Article  Google Scholar 

  13. F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons & Fractals 7, No 9 (1996), 1461–1477.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010).

    Book  MATH  Google Scholar 

  15. F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153–192; http://www.math.bas.bg/~fcaa

    MathSciNet  MATH  Google Scholar 

  16. F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in timefractional diffusion processes: A tutorial survey. Int. J. Diff. Equations 2010, (2010), 104505.

    MathSciNet  Google Scholar 

  17. F. Mainardi, G. Pagnini, The role of the Fox-Wright functions in fractional sub-diffusion of distributed order. J. Comput. Appl. Math. 207, No 2 (2007), 245–257.

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Mainardi, G. Pagnini, R. Gorenflo, Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6, No 4 (2003), 441–459; http://www.math.bas.bg/~fcaa

    MathSciNet  MATH  Google Scholar 

  19. R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in fractional dynamics descriptions of anomalous dynamical processes. J. Phys. A: Math. Gen. 37, No 31 (2004), R161–R208.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Mura, Non-Markovian Stochastic Processes and Their Applications: From Anomalous Diffusion to Time Series Analysis. Ph.D. Thesis, University of Bologna (2008); http://amsdottorato.cib.unibo.it/846/1/TesiMuraAntonio.pdf, Now available by Lambert Academic Publishing (2011).

  21. A. Mura, F. Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics. Integr. Transf. Spec. Funct. 20, No 3 (2009), 185–198.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Mura, G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. J. Phys. A: Math. Theor. 41, No 28 (2008), 285003.

    Article  MathSciNet  Google Scholar 

  23. A. Mura, M.S. Taqqu, F. Mainardi, Non-Markovian diffusion equations and processes: Analysis and simulations. Physica A 387, No 21 (2008), 5033–5064.

    Article  MathSciNet  Google Scholar 

  24. G. Pagnini, Nonlinear time-fractional differential equations in combustion science. Fract. Calc. Appl. Anal. 14, No 1 (2011), 80–93; http://www.springerlink.com/content/1311-0454/14/1/

    Article  MathSciNet  Google Scholar 

  25. G. Pagnini, The evolution equation for the radius of a premixed flame ball in fractional diffusive media. Eur. Phys. J. Special Topics 193, (2011), 105–117.

    Article  Google Scholar 

  26. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  27. A. Rocco, B.J. West, Fractional calculus and the evolution of fractal phenomena. Physica A 265, No 3–4 (1999), 535–546.

    Article  Google Scholar 

  28. R.K. Saxena, G. Pagnini, Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion I: The accelerating case. Physica A 390, No 4 (2011), 602–613.

    Article  MathSciNet  Google Scholar 

  29. E. Scalas, The application of continuous-time random walks in finance and economics. Physica A 362, No 2 (2006), 225–239.

    Article  Google Scholar 

  30. W.R. Schneider, Grey noise. In: Stochastic Processes, Physics and Geometry, World Scientific, Teaneck (1990), 676–681.

    Google Scholar 

  31. W.R. Schneider, Grey noise. In: Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, Vol. I, Cambridge University Press, Cambridge (1992), 261–282.

    Google Scholar 

  32. I.N. Sneddon, Mixed Boundary Value Problems in Potential Theory. North-Holland Publ., Amsterdam (1966).

    MATH  Google Scholar 

  33. I.N. Sneddon, The use in mathematical analysis of the Erdélyi-Kober operators and some of their applications, In: Lect. Notes Math. 457, Springer-Verlag, New York (1975), 37–79.

    Google Scholar 

  34. I.N. Sneddon, The Use of Operators of Fractional Integration in Applied Mathematics. RWN — Polish Sci. Publ., Warszawa-Poznan (1979).

    MATH  Google Scholar 

  35. I.M. Sokolov, A.V. Chechkin, J. Klafter, Distributed-order fractional kinetics. Acta Phys. Pol. B 35, No 4 (2004), 1323–1341.

    Google Scholar 

  36. J.A. Tenreiro Machado, And I say to myself: “What a fractional world!”. Fract. Calc. Appl. Anal. 14, No 4 (2011), 635–654; http://www.springerlink.com/content/1311-0454/14/4/

    Article  Google Scholar 

  37. B.M. Vinagre, I. Podlubny, A. Hernández, V. Feliu, Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3, No 3 (2000), 231–248; http://www.math.bas.bg/~fcaa

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Pagnini.

About this article

Cite this article

Pagnini, G. Erdélyi-Kober fractional diffusion. fcaa 15, 117–127 (2012). https://doi.org/10.2478/s13540-012-0008-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-012-0008-1

MSC 2010

Key Words and Phrases

Navigation