Skip to main content
Log in

Determination of the electronic band structure of the rutile polymorph of TiO2: a quantum chemical approach

  • Published:
Materials Science-Poland

Abstract

The aim of this work is the investigation of the relationship between the electronic band structure of the TiO2 rutile and the dimensionality of the system. For three dimensional system the bulk form of rutile was considered, while a slab model was chosen in order to represent the titanium (IV) dioxide (110) surface. The influence of changing the number of atomic layers on the bandgap value for the (110) surface was also examined. Density of states referring to the bands from the first valence band up to the bottom of the conduction band was projected on the whole set of atomic orbitals as well as on the significant shells of the titanium and oxygen atoms. Ab initio calculations with a B3LYP functional were carried out. Basis sets used were modified Ti_86-411(d31)G_darco_unpub and O 8_411_muscat_1999. The results are compared with experimental and computational data already available in the literature. Surface termination problem was discussed and the application of the obtained results as a starting point to obtain the first model of the rutile titania nanotube was proposed. The surface formation energies for rutile planes with a different surface terminations were compared and the modification to the equation needed for surface energy calculation was introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao L., Han M., Lian J., Thin Solid Films, 516(10) (2008), 3394–3398.

    Article  CAS  Google Scholar 

  2. Mosaddeq-Ur-Rahman Md., Murali Krishna K., Miki T., Soga T., Igarashi K., Tanemura S., Umeno M., Solar Energy Mat. Solar Cells, 48(1–4) (1997), 123–130.

    Article  CAS  Google Scholar 

  3. Brudnik A., Gorzkowska-Sobas A., Pamula E., Radecka M., Zakrzewska K., J. Power Sources — X Pol. Conf. on Syst. with Fast Ion. Trans., 173(2) (2007), 774–780.

    CAS  Google Scholar 

  4. Nozik A.J., Nature, 257 (1975), 383–386.

    Article  CAS  Google Scholar 

  5. Park Y.R., Kim K.J., Thin Solid Films, 484(1–2) (2005), 34–38.

    Article  CAS  Google Scholar 

  6. Tian G.-L., He H.-B., Shao J.-D., Chin. Phys. Lett., 22(7) (2005), 1787–1789.

    Article  CAS  Google Scholar 

  7. Baizaee S.M., Mousavi N., Phys. B: Cond. Matt., 404(16) (2009), 2111–2116.

    Article  CAS  Google Scholar 

  8. Morgan B.J., Watson G.W., Surf. Sci., 601(21) (2007), 5034–5041.

    Article  CAS  Google Scholar 

  9. Zhang Y.-F., Lin W., Li Y., Ding K.-N., Li J.-Q., J. Phys. Chem. B, 109 (2005), 19270–19277.

    Article  CAS  Google Scholar 

  10. Nilsing M., Persson P., Lunell S., Ojamae L., J. Phys. Chem. C, 111 (2007), 12116–12123.

    Article  CAS  Google Scholar 

  11. Dovesi R., Saunders V.R., Roetti R., Orlando R., Zicovich-wilson C.M., Pascale F., Civalleri B., Doll K., Harrison N.M., Bush I.J., Darco P., Llunell M., CRYSTAL06, Release: 1.0; V1.0.2 fix-sequential executable; CRYSTAL06 User’s Manual, University of Torino, Torino, 2006.

    Google Scholar 

  12. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A, Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannen-Berg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09. Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  13. Searle B.G., Comp. Phys. Commun., 137 (2001), 25.

    Article  CAS  Google Scholar 

  14. Vosko S.H., Wilk L., Nusair M., Can. J. Phys., 58(8) (1980), 1200.

    Article  CAS  Google Scholar 

  15. Bredow T., Heitjans P., Wilkening M., Phys. Rev. B, 70 (2004), 115111.

    Article  Google Scholar 

  16. Cora F., Mol. Phys., 103 (2005), 2483–2496.

    Article  CAS  Google Scholar 

  17. Muscat J., PhD Thesis, University of Manchester, Manchester, 1999.

  18. Scaranto J., Giorgianni S., J. Mol. Struct. THEOCHEM, 858 (2008), 72–76.

    Article  CAS  Google Scholar 

  19. Burdett J.K., Hughbanks T., Miller G.J., Richardson Jr. J.W., Smith J.V., J. Am. Chem. Soc., 109 (1987), 3639–3646.

    Article  CAS  Google Scholar 

  20. Tasker P.W., J. Phys. C: Solid State Phys., 12 (1979), 4977–4984.

    Article  CAS  Google Scholar 

  21. Lipkowitz K.B., Boyd B.D., Larter R., Cundari T.R., Rev. Comput. Chem., 21 (2005), 70.

    Google Scholar 

  22. Kiejna A., Pabisiak T., Gao S.W., J. Phys.: Cond. Matt., 18(17) (2006), 4209.

    Article  Google Scholar 

  23. Satoru F., Taka-Aki I., Hiroshi O., J. Phys. Chem. B, 109 (2005), 8557–8561.

    Article  Google Scholar 

  24. Tanemura S., Miao L., Jin P., Kaneko K., Terai A., Nabatova-Gabain N., App. Surf. Sci. — 11 th Intern. Conf. on Solid Films and Surf., 212–213 (2003), 654–660.

    Google Scholar 

  25. Muscat J., Wander A., Harrison N.M., Chem. Phys. Lett., 342(3–4) (2001), 397–401.

    Article  CAS  Google Scholar 

  26. Pascual J., Camassel J., Mathieu H., Phys. Rev. B, 18(10) (1978), 5606–5614.

    Article  CAS  Google Scholar 

  27. Nowotny J., Bak T., Burg T., Nowotny M.K., Sheppard L.R., J. Phys. Chem. C, 111 (2007), 9769–9778.

    Article  CAS  Google Scholar 

  28. Zhang Y., Tang T.-T., Girit C., Hao Z., Martin M.C., Zettl A., Crommie M.F., Ron Shen Y., Wang F., Nature, 459 (2009), 820–823.

    Article  CAS  Google Scholar 

  29. Von Oertzen G.U., Gerson A.R., Int. J. Quant. Chem., 106(9) (2006), 2054–2064.

    Article  Google Scholar 

  30. Kasowski R.V., Tait R.H., Phys. Rev. B, 20(12) (1979), 5168–5177.

    Article  CAS  Google Scholar 

  31. Mor G.K., Varghese O.K., Paulose M., Grimes C.A., Adv. Funct. Mater., (2005), 1291–1296.

  32. Yu J., Xiang Q., Zhou M., Appl. Catal. B: Envir., 90(3–4) (2009), 595–602.

    Article  CAS  Google Scholar 

  33. Lin F., Zhou G., Li Z., Li J., Wu J., Duan W., Chem. Phys. Lett., 475(1–3) (2009), 82–85.

    Article  CAS  Google Scholar 

  34. Wu X., Jiang Q.-Z., Ma Z.-F., Fu M., Shangguan W.-F., Solid State Commun., 136(9–10) (2005), 513–517.

    Article  CAS  Google Scholar 

  35. Macak J.M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P., Curr. Opinion in Solid State and Mater. Sci., 11(1–2) (2007), 3–18.

    Article  CAS  Google Scholar 

  36. Tsai Ch.-ch., Nian J.-N., Teng H., App. Surf. Sci., 253(4) (2006), 1898–1902.

    Article  CAS  Google Scholar 

  37. Zlamal M., Macak J.M., Schmuki P., Krysa J., Electrochem. Commun., 9(12) (2007), 2822–2826.

    Article  CAS  Google Scholar 

  38. Lai Y., Zhuang H., Sun L., Chen Z., Lin Ch., Electrochim. Acta, 54(26) (2009), 6536–6542.

    Article  CAS  Google Scholar 

  39. Yang Y., Wang X., Li L., Mat. Sci. Eng.: B, 149(1) (2008), 58–62.

    Article  CAS  Google Scholar 

  40. Chen X., Schriver M., Suen T., Mao S.S., Thin Solid Films, 515(24) (2007), 8511–8514.

    Article  CAS  Google Scholar 

  41. Bandura A.V. Evarestov R.A., Surf. Sci., 603(18) (2009), L117–L120.

    Article  CAS  Google Scholar 

  42. Liu Z., Zhang Q., Qin L.-C., Solid State Commun., 141(3) (2007), 168–171.

    Article  CAS  Google Scholar 

  43. Du G.H., Chen Q., Che R.C., Yuan Z.Y., Peng L.M., App. Phys. Lett., 79(22) (2001), 3702–3704.

    Article  CAS  Google Scholar 

  44. Wang Y.Q., Hu G.Q., Duan X.F., Sun H.L., Xue Q.K., Chem. Phys. Lett., 365(5–6) (2002), 427–431.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Bardziński.

About this article

Cite this article

Bardziński, P.J. Determination of the electronic band structure of the rutile polymorph of TiO2: a quantum chemical approach. Mater Sci-Pol 29, 223–232 (2011). https://doi.org/10.2478/s13536-011-0035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-011-0035-3

Keywords

Navigation